首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined and/or interactive effects of inorganic nitrogen (as ammonium) and irradiance on the accumulation of nitrogenous compounds, like UV-absorbing mycosporine-like amino acids (MAAs), chlorophyll a and phycobiliproteins, were examined in the red alga Grateloupia lanceola (J. Agardh) J. Agardh in a high irradiance laboratory exposure and a subsequent recovery period under low light. Also, photosynthetic activity as in vivo chlorophyll fluorescence of photosystem II, i.e. optimum quantum yield (Fv/Fm), electron transport rate (ETR) and quantum efficiency, were examined. Photosynthetic activity, phycobiliproteins and internal nitrogen content declined during the 3-day PAR (photosynthetically active radiation; 600 μmol s−1 m−2) and PAR + UVR (ultraviolet radiation; UVB 280–315 nm 0.8 W m−2, UVA 315–400 nm 16 W m−2) exposure. Ammonium supplied in the culture medium (0, 100 and 300 μM NH4Cl) modified the responses of the alga to high irradiance exposures in a concentration dependent manner, mainly with respect to recovery, as the highest recovery during a 10-day low light period was produced under elevated concentration of ammonium (300 μM). The recovery of photosynthetic activity and phycobiliproteins was enhanced in the algae previously incubated under PAR + UVR as compared to exposure to only PAR, suggesting a beneficial effect of UVR on recovery or photoprotective processes under enriched nitrogen conditions. However, the content of MAAs did not follow the same pattern and thus it could not be concluded as the cause of observed enhanced recovery.  相似文献   

2.
Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD = 626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m3 (264 mW/m2). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m2, reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.  相似文献   

3.
Ammonium uptake rates and the mechanism for ammonium transport into the cells have been analysed in Zostera marina L. In the cells of this species, a proton pump is present in the plasmalemma, which maintains the membrane potential. However, this seagrass shows a high-affinity transport mechanism both for nitrate and phosphate which is dependent on sodium and is unique among angiosperms. We have then analysed if the transport of another N form, ammonium, is also dependent of sodium. First, we have studied ammonium transport at the cellular level by measurements of membrane potentials, both in epidermal root cells and mesophyll cells. And second, we have monitored uptake rates in whole leaves and roots by depletion experiments. The results showed that ammonium is taken up by a high-affinity transport system both in root and leaf cells, although two different of kinetics could be discerned in mesophyll cells (with affinity constants of 2.2 ± 1.1 μM NH4+, in the range 0.01-10 μM NH4+, and 23.2 ± 7.1 μM NH4+, at concentrations between 10 and 500 μM NH4+). However, only one kinetic could be observed in epidermal root cells, which showed a Km = 11.2 ± 1.0 μM NH4+, considering the whole ammonium concentration range assayed (0.01-500 μM NH4+). The higher affinity of leaf cells for ammonium was consistent with the higher uptake rates observed in leaves, with respect to roots, in depletion experiments at 10 μM NH4+ initial concentration. However, when an initial concentration of 100 μM was assayed, the difference between uptake rates was reduced, but still being higher in leaves. Variations in proton or sodium-electrochemical gradient did not affect ammonium uptake, suggesting that the transport of this nutrient is not driven by these ions and that the ammonium transport mechanism could be different to the transport of nitrate and phosphate in this species.  相似文献   

4.
Keggin-type modified ammonium salts of molybdophosporic acid were prepared by partial substituting of the ammonium ions by X (X = SbIII, BiIII or SnII) ions. They were characterised by BET method, XRD, 31P NMR, UV-Vis, Raman, IR spectroscopies and thermal analysis (TG and DTA). It appeared that introducing an element X = Sb or Sn led to partially reduced compound corresponding to the electron exchange occurring between Sb(III) or Sn(II) and Mo(VI) without modification of Keggin structure.  相似文献   

5.
Sphagna are vulnerable to enhanced nitrogen (N) deposition. This article reports how the green (shade, under Calluna) and red (open grown) Sphagnum capillifolium respond to ammonium and nitrate additions of 56 kg N ha−1 y−1 over the background of 8-10 kg N ha−1 y−1 on an ombrotrophic bog in the Scottish Borders after seven years. Samples and measurements were made during a range of hydrated and desiccated conditions in the summer of 2009. Both ammonium and nitrate increased moss N concentration, but while ammonium decreased cross-sectional area of leaf hyaline cells and the leaf hyaline/chlorophyllose cell area ratio, nitrate increased both of them and capitulum pH. The changes in leaf morphology have not previously been reported to our knowledge. Especially the red S. capillifolium was affected by ammonium with significant changes in shoot N concentration (+71%) and the cross-sectional area of leaf chlorophyllose cells (+67%), and reductions in shoot dry weight (−30%) and fresh weight (−42%), the cross-sectional area of leaf hyaline cells (−24%), the leaf hyaline/chlorophyllose cell area ratio (−54%), as well as in chlorophyll fluorescence (measured as Fv/Fm) of desiccated capitulum (−65%) (all p < 0.05). These observations show that N deposition may affect moss physiology also through changes in leaf anatomy and morphology. The results also highlight potential sampling issues and causes of variability in N responses when collecting variably pigmented Sphagna.  相似文献   

6.
A microfluidic microbial fuel cell fabricated by soft lithography   总被引:1,自引:0,他引:1  
Qian F  He Z  Thelen MP  Li Y 《Bioresource technology》2011,102(10):5836-5840
Here we report a new microfluidic microbial fuel cell (MFC) platform built by soft-lithography techniques. The MFC design includes a unique sub-5 μL polydimethylsiloxane soft chamber featuring carbon cloth electrodes and microfluidic delivery of electrolytes. Bioelectricity was generated using Shewanella oneidensis MR-1 cultivated on either complex organic substrates or lactate-based minimal medium. These micro-MFCs exhibited fast start-ups, reproducible current generation, and enhanced power densities up to 62.5 W m−3 that represents the best result for sub-100 μL MFCs. Systematic comparisons of custom-made MFC reactors having different chamber sizes indicate volumetric power density is inversely correlated with chamber size in our systems: i.e., the smaller the chamber, the higher the power density is achieved.  相似文献   

7.
Tao HC  Li W  Liang M  Xu N  Ni JR  Wu WM 《Bioresource technology》2011,102(7):4774-4778
A membrane-free baffled microbial fuel cell (MFC) was developed to treat synthetic Cu(II) sulfate containing wastewater in cathode chamber and synthetic glucose-containing wastewater fed to anode chamber. Maximum power density of 314 mW/m3 with columbic efficiency of 5.3% was obtained using initial Cu2+ concentration of 6400 mg/L. Higher current density favored the cathodic reduction of Cu2+, and removal of Cu2+ by 70% was observed within 144 h using initial concentration of 500 mg/L. Powder X-ray diffraction (XRD) analysis indicated that the Cu2+ was reduced to Cu2O or Cu2O plus Cu which deposited on the cathode, and the deficient cathodic reducibility resulted in the formation of Cu4(OH)6SO4 at high initial Cu2+ concentration (500-6400 mg/L). This study suggested a novel low-cost approach to remove and recover Cu(II) from Cu2+-containing wastewater using MFC-type reactor.  相似文献   

8.
The metabolic capability of denitrifying sludge to oxidize ammonium and p-cresol was evaluated in batch cultures. Ammonium oxidation was studied in presence of nitrite and/or p-cresol by 55 h. At 50 mg/L NH4+-N and 76 mg/L NO2-N, the substrates were consumed at 100% and 95%, respectively, being N2 the product. At 50 mg/L NH4+-N and 133 mg/L NO2-N, the consumption efficiencies decreased to 96% and 70%, respectively. The increase in nitrite concentration affected the ammonium oxidation rate. Nonetheless, the N2 production rate did not change. In organotrophic denitrification, the p-cresol oxidation rate was slower than ammonium oxidation. In litho-organotrophic cultures, the p-cresol and ammonium oxidation rates were affected at 133 mg/L NO2-N. Nonetheless, at 76 mg/L NO2-N the denitrifying sludge oxidized ammonium and p-cresol, but at different rate. Finally, this is the first work reporting the simultaneous oxidation of ammonium and p-cresol with the production of N2 from denitrifying sludge.  相似文献   

9.
This study evaluated how different types of industrial wastewaters (bakery, brewery, paper and dairy) affect the performance of identical microbial fuel cells (MFCs); and the microbial composition and electrochemistry of MFC anodes. MFCs fed with paper wastewater produced the highest current density (125 ± 2 mA/m2) at least five times higher than dairy (25 ± 1 mA/m2), brewery and bakery wastewaters (10 ± 1 mA/m2). Such high current production was independent of substrate degradability. A comprehensive study was conducted to determine the factor driving current production when using the paper effluent. The microbial composition of anodic biofilms differed according to the type of wastewater used, and only MFC anodes fed with paper wastewater showed redox activity at −134 ± 5 mV vs NHE. Electrochemical analysis of this redox activity indicated that anodic bacteria produced a putative electron shuttling compound that increased the electron transfer rate through diffusion, and as a result the overall MFC performance.  相似文献   

10.
Surge (non-linear) uptake of ammonium, measured by incorporation of 15N, was investigated in three species of macroalgae (Ulva lactuca Linnaeus (Chlorophyta), Soliera robusta (Greville) Kylin (Rhodophyta) and Dictyota dichotoma (Hudson) Lamouroux (Phaeophyta)) from Kavaratti atoll (Lakshadweep, India). Addition of ammonium (up to 20 μmol L− 1) led to pronounced uptake within 4-6 min, with the amount of ammonium taken up during surge phase (< 4 min) accounting for from about half to 10 times that taken up during the remaining period of incubation (5-30 min). Amount of ammonium taken up during surge related linearly to the concentration of ammonium given. Surge uptake in the dark was also substantial, averaging 80% of that in light. Capability for rapid uptake of pulses of ammonium released by heterotrophs during the day or night could thus be an important mechanism of survival and proliferation of macroalgae in the N-impoverished atoll waters.  相似文献   

11.
The performance of the cathodic electron acceptors (CEA) used in the two-chambered microbial fuel cell (MFC) was in the following order: potassium permanganate (1.11 V; 116.2 mW/m2) > potassium persulfate (1.10 V; 101.7 mW/m2) > potassium dichromate, K2Cr2O7 (0.76 V; 45.9 mW/m2) > potassium ferricyanide (0.78 V; 40.6 mW/m2). Different operational parameters were considered to find out the performance of the MFC like initial pH in aqueous solutions, concentrations of the electron acceptors, phosphate buffer and aeration. Potassium persulfate was found to be more suitable out of the four electron acceptors which had a higher open circuit potential (OCP) but sustained the voltage for a much longer period than permanganate. Chemical oxygen demand (COD) reduction of 59% was achieved using 10 mM persulfate in a batch process. RALEX™ AEM-PES, an anion exchange membrane (AEM), performed better in terms of power density and OCP in comparison to Nafion®117 Cation Exchange Membrane (CEM).  相似文献   

12.
Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470 Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m2 was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m2 was recorded.  相似文献   

13.
Yuan Y  Zhao B  Zhou S  Zhong S  Zhuang L 《Bioresource technology》2011,102(13):6887-6891
This study investigates the effects of anodic pH on electricity generation in microbial fuel cells (MFCs) and the intrinsic reasons behind them. In a two-chamber MFC, the maximum power density is 1170 ± 58 mW m−2 at pH 9.0, which is 29% and 89% higher than those working at pH 7.0 and 5.0, respectively. Electrochemical measurements reveal that pH affects the electron transfer kinetics of anodic biofilms. The apparent electron transfer rate constant (kapp) and exchange current density (i0) are greater whereas the charge transfer resistance (Rct) is smaller at pH 9.0 than at other conditions. Scanning electron microscopy verifies that alkaline conditions benefit biofilm formation in MFCs. These results demonstrate that electrochemical interactions between bacteria and electrodes in MFCs are greatly enhanced under alkaline conditions, which can be one of the important reasons for the improved MFC output.  相似文献   

14.
Wetlands are capable of reducing nutrient loadings to receiving water bodies, and hence many artificial wetlands have been constructed for wastewater nutrient removal. In this study, diffusive equilibrium in thin films (DETs) and equilibrium phosphorus concentration (EPC0) analysis were used to examine the role of sediment as a nutrient source or sink in a constructed treatment wetland in summer. The effect of dredging on sediment-water nutrient exchange was also studied. Soluble reactive phosphorus (SRP), ammonium (NH4+) and sulphate (SO42−) concentration profiles were measured by DET across the sediment-water interface (SWI) in both a settling pond and iris reed bed within the wetland. The SRP concentrations in the sediment pore-waters of the settling pond were extremely high (up to 29,500 μg l−1) near the SWI. This is over an order of magnitude higher than the levels found in the water column, which in turn are over an order of magnitude higher than environmental levels proposed to limit eutrophication in rivers. The profiles demonstrated an average net release of SRP and NH4+ from the settling pond sediment to the overlying water of 58 mg m−2 d−1 (±32 mg m−2 d−1 (1 sd)) and 16 mg m−2 d−1 (±25 mg m−2 d−1 (1 sd)), respectively. The DET SO42− concentration profiles revealed that the sediment was anoxic within 2 cm of the SWI. Dredging of the reed bed made no significant difference to the P release characteristics across the SWI. The EPC0s were much lower than the SRP concentration of the overlying water, indicating that the sediment had the potential to act as a phosphate sink. The apparent contradiction of the DET and EPC0 results is attributed to the fact that DET measurements are made in situ, where as EPC0 measurements are ex situ. These results show that substantial releases of P can occur from wetland sediments, and also highlight the need for caution when interpreting ex situ EPC0 analytical results.  相似文献   

15.
An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on β-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of α-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and α-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n = 8). The biosensor was found to be stable for at least 1 month when stored dry at 4 °C.  相似文献   

16.
Using a pre-enriched microbial consortium as the inoculum and continuous supply of carbon source, improvement in performance of a three-dimensional, flow-through MFC anode utilizing ferricyanide cathode was investigated. The power density increased from 170 W/m3 (1800 mW/m2) to 580 W/m3 (6130 mW/m2), when the carbon loading increased from 2.5 g/l-day to 50 g/l-day. The coulombic efficiency (CE) decreased from 90% to 23% with increasing carbon loading. The CEs are among the highest reported for glucose and lactate as the substrate with the maximum current density reaching 15.1 A/m2. This suggests establishment of a very high performance exoelectrogenic microbial consortium at the anode. A maximum energy conversion efficiency of 54% was observed at a loading of 2.5 g/l-day. Biological characterization of the consortium showed presence of Burkholderiales and Rhodocyclales as the dominant members. Imaging of the biofilms revealed thinner biofilms compared to the inoculum MFC, but a 1.9-fold higher power density.  相似文献   

17.
A model for transport of ammonia and ammonium ions across cell membranes is presented. The model suggests that ammonium ions compete with potassium ions for inward transport, over the cytoplasmic membrane, via potassium transport proteins like the Na+/K+-ATPase and the Na+K+2Cl-cotransporter. It also explains the difference between the ammonia/ammonium that is added to the cells and which is formed by the cells during metabolism of amino acids, especially glutamine and glutamate. The ammonium transport and subsequent events lead to predictable intracellular and extracellular pH (pHe) changes. Experiments which verified the model and the predicted consequences were performed by measurements of the pHe in concentrated cell suspensions. Addition of ammonium ions caused a time-dependent pHe increase which was inhibited by potassium ions. The test system is not per se specific for transport measurements but the effect of potassium ions on the pHe strongly favors our suggested model. Simple diffusion of ammonium ions would not be counteracted by potassium ions. The results show that ammonium ion transport in the murine myeloma cell line (Sp2/0-Ag14) used is inhibited by an excess of potassium ions. Results from experiments with specific inhibitors of suggested transport proteins were not conclusive. It is postulated that one important toxic effect of ammonia/ammonium is an increased demand for maintenance energy, caused by the need to maintain ion gradients over the cytoplasmic membrane. The results also suggest that potassium ions can be used to detoxify ammonia/ammonium in animal cell cultivations.  相似文献   

18.
Previous work demonstrated that a mixture of NH4Cl and KNO3 as nitrogen source was beneficial to fed-batch Arthrospira (Spirulina) platensis cultivation, in terms of either lower costs or higher cell concentration. On the basis of those results, this study focused on the use of a cheaper nitrogen source mixture, namely (NH4)2SO4 plus NaNO3, varying the ammonium feeding time (T = 7-15 days), either controlling the pH by CO2 addition or not. A. platensis was cultivated in mini-tanks at 30 °C, 156 μmol photons m−2 s−1, and starting cell concentration of 400 mg L−1, on a modified Schlösser medium. T = 13 days under pH control were selected as optimum conditions, ensuring the best results in terms of biomass production (maximum cell concentration of 2911 mg L−1, cell productivity of 179 mg L−1 d−1 and specific growth rate of 0.77 d−1) and satisfactory protein and lipid contents (around 30% each).  相似文献   

19.
An ammonium transport system in the phototrophic N2-fixing bacteriumRhodospirillum rubrum was characterized by using the uptake of14C-methylamine as a probe.Uptake showed saturation kinetics with an apparentK m =110 M. It was competitively inhibited by ammonium (K i =7 M). Uptake exhibited a narrow pH maximum around pH 7.0.Up to 200-fold gradients across the membrane were formed within 40–60 min. Gradient formation was inhibited by carbon starvation, azide or cyanide. Pre-accumulated methylamine was released by ammonium pulses to more than 80%, indicating only minor metabolization.The synthesis of the transport system was repressed by ammonium in high concentrations.  相似文献   

20.
A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC’s cathode, and nitrate was electrochemically denitrified in the A-MFC’s cathode. The coupled MFC system reached power densities of 14 W/m3 net cathodic compartment (NCC) and 7.2 W/m3 NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH4+-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号