首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
亚硝酸盐对污水生物除磷影响的研究进展   总被引:4,自引:0,他引:4  
亚硝酸盐作为生物硝化和反硝化的中间产物, 存在于污水生物脱氮除磷系统中。对于生物强化除磷工艺亚硝酸盐既是电子受体用于反硝化除磷, 同时又是抑制剂影响生物除磷过程。本文综述了聚磷菌在厌氧、好氧和缺氧环境中的代谢机理, 在此基础上分别从好氧除磷和反硝化除磷两方面介绍了亚硝酸盐对污水生物除磷影响的研究, 同时概述了亚硝酸盐对生物除磷的抑制机理, 并对该领域的研究提出了个人见解。  相似文献   

2.
It is important to determine the effect of changing environmental conditions on the microbial kinetics for design and modeling of biological treatment processes. In this research, the kinetics of nitrate and nitrite reduction by autotrophic hydrogen-dependent denitrifying bacteria and the possible role of acetogens were studied in two sequencing batch reactors (SBR) under varying pH and temperature conditions. A zero order kinetic model was proposed for nitrate and nitrite reduction and kinetic coefficients were obtained at two temperatures (25 +/- 1 and 12 +/- 1 degrees C), and pH ranging from 7 to 9.5. Nitrate and nitrite reduction was inhibited at pH of 7 at both temperatures of 12 +/- 1 and 25 +/- 1 degrees C. The optimum pH conditions for nitrate and nitrite reduction were 9.5 at 25 +/- 1 degrees C and 8.5 at 12 +/- 1 degrees C. Nitrate and nitrite reduction rates were compared, when they were used separately as the sole electron acceptor. It was shown that nitrite reduction rates consistently exceeded nitrate reduction rates, regardless of temperature and pH. The observed transitional accumulation of nitrite, when nitrate was used as an electron acceptor, indicated that nitrite reduction was slowed down by the presence of nitrate. No activity of acetogenic bacteria was observed in the hydrogenotrophic biomass and no residual acetate was detected, verifying that the kinetic parameters obtained were not influenced by heterotrophic denitrification and accurately represented autotrophic activity.  相似文献   

3.
ANaerobic AMMonium OXidation (ANAMMOX) process, an advanced biological nitrogen removal alternative to traditional nitrification--denitrification removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility of enriching anammox bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (AnMBR) for N-removal is reported in this paper. The Anammox activity was established in the AnMBR with anaerobic digester seed culture from a Sewage Treatment Plant in batch mode with recirculation followed by semi continuous process and continuous modes of operation. The AnMBR performance under varying Nitrogen Loading Rates (NLR) and HRTs is reported for a year, in terms of nitrogen transformations to ammoniacal nitrogen, nitrite and nitrate along with hydrazine and hydroxylamine. Interestingly ANAMMOX process was evident from simultaneous Amm-N and nitrite reduction, consistent nitrate production, hydrazine and hydroxylamine presence, notable organic load reduction and bicarbonate consumption.  相似文献   

4.
【背景】反硝化厌氧甲烷氧化(Denitrifying anaerobic methane oxidation,DAMO)是以硝酸盐或亚硝酸盐为电子受体以甲烷为电子供体的厌氧氧化过程,对认识全球碳氮循环、削减温室气体排放和开发废水脱氮新技术等方面具有重要意义。【目的】认识以硝酸盐和亚硝酸盐为电子受体的DAMO微生物富集过程和结果的差异性。【方法】在序批式反应器(Sequencing batch reaetor,SBR)内接种混合物,分别以硝酸盐和亚硝酸盐为电子受体连续培养800 d,定期检测反应器基质浓度变化、计算转化速率;利用16S rRNA基因系统发育分析研究功能微生物的多样性,利用实时荧光定量PCR技术定量测定功能微生物。【结果】以亚硝酸盐为电子受体的1、3号反应器富集到了DAMO细菌,未检测到DAMO古菌;以硝酸盐为电子受体的2号反应器富集到了DAMO细菌和古菌的混合物;3个反应器的脱氮速率经过初始低速期、快速提升期,最终达到稳定,但2号快速提升期开始时间比1、3号晚了80 d左右,达到稳定的时间更长,稳定最大速率为1、3号的44.7%、40.3%。【结论】硝酸盐和亚硝酸盐对富集产物有决定性影响;以硝酸盐为电子受体富集得到的DAMO古菌和细菌协同体系可以长期稳定共存,DAMO古菌可能是协同体系中脱氮速率的限制性因素。  相似文献   

5.
Liu S  Yang F  Gong Z  Meng F  Chen H  Xue Y  Furukawa K 《Bioresource technology》2008,99(15):6817-6825
The simultaneous ammonium and sulfate removal was detected in an anammox reactor, consisted of ammonium oxidization with sulfate deoxidization, and subsequently traditional anammox process, in via of middle medium nitrite with solid sulfur and N2 as the terminal products. The pure anammox bacteria offered a great biotechnological potential for the completely autotrophic reaction indicated by batch tests. Denaturing gradient gel electrophoresis (DGGE) analysis further revealed that a new organism belonging to Planctomycetales was strongly enriched in the defined niche: the redox of ammonium and sulfate. The new species "Anammoxoglobussulfate" was so considered as holding a critical role in the ammonium oxidization with sulfate deoxidization to nitrite. Afterwards, the Planctomyces existing in the bacteria community performed the anammox process together to achieve the complete nitrogen and sulfate removal. The potential use of sulfate as electron acceptor for ammonium oxidizing widens the usage of anammox bacteria.  相似文献   

6.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

7.
Autotrophic denitrification coupled with sulfide oxidation represents an interesting alternative for the simultaneous removal of nitrate/nitrite and sulfide from wastewaters. The applicability of such bioprocess is especially advantageous for the post treatment of effluents from anaerobic reactors, since they usually produce sulfides, which can be used as endogenous electron donor for autotrophic denitrification. This study evaluated the effect of sulfide concentration on this bioprocess using nitrate and nitrite as electron acceptors in vertical fixed-bed reactors. The results showed that intermediary sulfur compounds were mainly produced when excess of electron donor was applied, which was more evident when nitrate was used. Visual evidences suggested that elemental sulfur was the intermediary compound produced. There was also evidence that the elemental sulfur previously formed was being used when sulfide was applied in stoichiometric concentration relative to nitrate/nitrite. Nitrite was more readily consumed than nitrate. For both electron acceptors and sulfide concentrations tested, autotrophic denitrification was not affected by residual heterotrophic denitrification via endogenic activity, occurring as a minor additional nitrogen removal process.  相似文献   

8.
Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine.  相似文献   

9.
Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4–6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.  相似文献   

10.
The processes involved in nitrate metabolism in Halobacterium of the Dead Sea are part of a dissimilatory pathway operating in these bacteria. The induction of both nitrate and nitrite reductases is shown to depend on the presence of nitrate and of anaerobic conditions. The gas products of the denitrification process were identified as nitrous oxide and nitrogen. Some properties of two of the enzymes involved in this process, nitrate and nitrite reductases, are reported. It is shown that the 2 Feferredoxin, which is present in large quantities in Halobacterium of the Dead Sea, can serve as an electron donor for nitrite reduction by nitrite reductase. It is suggested that the presence of a dissimilatory pathway for the reduction of nitrate in Halobacterium of the Dead Sea can be used as a tool for its classification.  相似文献   

11.
Two approaches based on ne w process development and biological nitrogen transformation were investigated in a bench study for removing nitrogen as N2 gas from poultry waste while stabilizing the wastes. The process, known as "Anammox", was explored in batch anaerobic culture using serum bottles. The Anammox process involves the use of nitrite as an electron acceptor in the bacterially mediated oxidation of ammonia to yield N2. Studies are described wherein nitrite was added to poultry waste and the effects on ammonium levels were monitored. About 13-22% ammonium removal was observed with the inoculation of returned activated sludge, and the total ammonium reduction was not proportional to the reduction of nitrite, thereby suggesting that Anammox was less competitive under the conditions in our studies. The addition of nitrite and nitrate was not inhibitory to the process based on gas generation and COD reduction. The classical nitrogen removal process of nitrification followed with denitrification offers a more reliable basis for nitrogen removal from poultry wastes.  相似文献   

12.
Eight anaerobic enrichment cultures with thiosulfate as electron donor and nitrate as electron acceptor were inoculated with sediment samples from hypersaline alkaline lakes of Wadi Natrun (Egypt) at pH 10; however, only one of the cultures showed stable growth with complete nitrate reduction to dinitrogen gas. The thiosulfate-oxidizing culture subsequently selected after serial dilution developed in two phases. Initially, nitrate was mostly reduced to nitrite, with a coccoid morphotype prevailing in the culture. During the second stage, nitrite was reduced to dinitrogen gas, accompanied by mass development of thin motile rods. Both morphotypes were isolated in pure culture and identified as representatives of the genus Thioalkalivibrio, which includes obligately autotrophic sulfur-oxidizing haloalkaliphilic species. Nitrate-reducing strain ALEN 2 consisted of large nonmotile coccoid cells that accumulated intracellular sulfur. Its anaerobic growth with thiosulfate, sulfide, or polysulfide as electron donor and nitrate as electron acceptor resulted in the formation of nitrite as the major product. The second isolate, strain ALED, was able to grow anaerobically with thiosulfate as electron donor and nitrite or nitrous oxide (but not nitrate) as electron acceptor. Overall, the action of two different sulfur-oxidizing autotrophs resulted in the complete, thiosulfate-dependent denitrification of nitrate under haloalkaliphilic conditions. This process has not yet been demonstrated for any single species of chemolithoautotrophic sulfur-oxidizing haloalkaliphiles.  相似文献   

13.
Abstract Experiments were carried out with slurries of saltmarsh sediment to which varying concentrations of nitrate were added. The acetylene blocking technique was used to measure denitrification by accumulation of nitrous oxide, while reduction of nitrate to nitrite and ammonium was also measured. There was good recovery of reduced nitrate and at the smallest concentration of nitrate used (250 μM) there was approximately equal reduction to either ammonium or nitrous oxide (denitrification). Nitrite was only a minor end-product of nitrate reduction. As the nitrate concentration was increased the proportion of the nitrate which was denitrified to nitrous oxide increased, to 83% at the greatest nitrate concentration used (2 mM), while reduction to ammonium correspondingly decreased. This change was attributed either to a greater competitiveness by the denitrifiers for nitrate as the ratio of electron donor to electron acceptor decreased; or to the increased production of nitrite rather than ammonium by fermentative bacteria under high nitrate, the nitrite then being reduced to nitrous oxide by denitrifying bacteria.  相似文献   

14.
基于响应面法对一株好氧反硝化菌脱氮效能优化   总被引:2,自引:1,他引:1  
【目的】水体富营养化是当今我国水环境面临的重大水域环境问题,氮素超标排放是主要的引发因素之一。好氧反硝化菌构建同步硝化反硝化工艺比传统脱氮工艺优势更大。获得高效的好氧反硝化菌株并通过生长因子优化使脱氮效率达到最高。【方法】经过序批式生物反应器(Sequencing batch reactor,SBR)的定向驯化,筛选获得高效好氧反硝化菌株,采用响应面法优化好氧反硝化过程影响总氮去除效率的关键因子(碳氮、溶解氧、pH、温度)。【结果】从运行稳定的SBR反应器中定向筛选高效好氧反硝化菌株Pseudomonas T13,采用响应面法对碳氮比、pH和溶解氧关键因子综合优化获得在18 h内最高硝酸盐去除率95%,总氮去除率90%。该菌株的高效反硝化效果的适宜温度范围为25?30 °C;最适pH为中性偏碱;适宜的COD/NO3?-N为4:1以上;最佳溶解氧浓度在2.5 mg/L。【结论】从长期稳定运行的SBR反应器中筛选获得一株高效好氧反硝化菌Pseudomonas T13,硝酸盐还原酶比例占脱氮酶基因的30%以上,通过运行条件优化获得硝氮去除率达到90%以上,对强化废水脱氮工艺具有良好应用价值。  相似文献   

15.
Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfurdenitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and 7.96 mg(1/2)/l(1/2)·h were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and 6.23 mg(1/2)/l(1/2)·h were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.  相似文献   

16.
Factors controlling the anaerobic oxidation of ammonium with nitrate and nitrite were explored in a marine sediment from the Skagerrak in the Baltic-North Sea transition. In anoxic incubations with the addition of nitrite, approximately 65% of the nitrogen gas formation was due to anaerobic ammonium oxidation with nitrite, with the remainder being produced by denitrification. Anaerobic ammonium oxidation with nitrite exhibited a biological temperature response, with a rate optimum at 15°C and a maximum temperature of 37°C. The biological nature of the process and a 1:1 stoichiometry for the reaction between nitrite and ammonium indicated that the transformations might be attributed to the anammox process. Attempts to find other anaerobic ammonium-oxidizing processes in this sediment failed. The apparent Km of nitrite consumption was less than 3 μM, and the relative importance of ammonium oxidation with nitrite and denitrification for the production of nitrogen gas was independent of nitrite concentration. Thus, the quantitative importance of ammonium oxidation with nitrite in the jar incubations at elevated nitrite concentrations probably represents the in situ situation. With the addition of nitrate, the production of nitrite from nitrate was four times faster than its consumption and therefore did not limit the rate of ammonium oxidation. Accordingly, the rate of this process was the same whether nitrate or nitrite was added as electron acceptor. The addition of organic matter did not stimulate denitrification, possibly because it was outcompeted by manganese reduction or because transport limitation was removed due to homogenization of the sediment.  相似文献   

17.
The recently developed denitrifying ammonium oxidation (DEAMOX) process combines the anammox reaction with autotrophic denitrifying conditions using sulfide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper compares a quasisteady-state performance of this process for treatment of baker's yeast wastewater under intermittent and continuous feeding and increasing nitrogen loading rate (NLR) from 300 till 858 mg N/L/d. The average total nitrogen removal slightly decreased on increasing the NLR: from 86 to 79% (intermittent feeding) and from 87 to 84% (continuous feeding). The better performance under continuous feeding was due to a more complete nitrate removal in the former case whereas the ammonia removal was similar for both feeding regimes under the comparable NLR. A possible explanation can be that, during continuous feeding (simultaneous supply of nitrate and sulfide), there were less mass transfer limitations for sulfide oxidizing denitrifiers presumably located in the outer layer of sludge aggregates. On the contrary, the ammonia oxidisers presumably located inside the aggregates apparently suffered from nitrite mass transfer limitations under both the feedings. The paper further describes some characteristics of the DEAMOX sludge.  相似文献   

18.
Nitrogen removal with the anaerobic ammonium oxidation process   总被引:3,自引:0,他引:3  
Anaerobic ammonium-oxidizing (anammox) bacteria convert ammonium to N2 with nitrite as the terminal electron acceptor in the absence of O2. Nitritation–anammox bioreactors provide a cost-effective and environment-friendly alternative to conventional nitrification/denitrification nitrogen removal systems. Currently, this process is only applied for ammonium removal from wastewater with high ammonium load and temperature. Nevertheless, recent results obtained with laboratory-scale bioreactors suggest new possible routes of application of the Nitritation–anammox technology including (1) municipal wastewater treatment, removal of (2) methane in combination with nitrite-reducing methane-oxidizing bacteria, (3) nitrate coupled to organic acid oxidation and (4) nitrogen oxides. The current review summarizes the state-of-the-art of the application of Nitritation–anammox systems and discusses the possibilities of utilizing these recent results for wastewater treatment.  相似文献   

19.
Oxygen-Nitrogen Relationships in Autotrophic Nitrification   总被引:4,自引:1,他引:3       下载免费PDF全文
Oxygen utilization by the autotrophic nitrifiers Nitrosomonas and Nitrobacter was studied. Experimental evidence is presented which reflects the effect of carbon dioxide fixation on overall oxygen utilization in autotrophic nitrification. Measurement of dissolved oxygen and inorganic nitrogen changes indicates that oxygen-nitrogen ratios in inorganic nitrogen oxidation are equal to 3.22 parts (expressed in milligrams per liter) of oxygen per part of ammonia nitrogen oxidized to nitrite nitrogen and 1.11 parts of oxygen per part of nitrite nitrogen oxidized to nitrate nitrogen. These values rather than the stoichiometric ratios should be used in nitrogenous oxygen demand calculations.  相似文献   

20.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号