首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemicellulose sugar recovery and ethanol production obtained from SO2-catalyzed steam explosion of a mixed white fir (70%) and ponderosa pine (30%) feedstock containing bark (9% dry weight/dry weight) was assessed. More than 90% of the available hemicellulose sugars could be recovered in the hydrolysate obtained after steam explosion at 195 degrees C, 2.38 min, and 3.91% SO2, with 59% of the original hemicellulose sugars detected in a monomeric form. Despite this high sugar recovery, this hydrolysate showed low ethanol yield (64% of theoretical yield) when fermented with a spent sulfite liquor-adapted strain of Saccharomyces cerevisiae. In contrast, most hydrolysates prepared at higher steam explosion severity showed comparable or higher ethanol yields. Furthermore, the hydrolysates prepared from bark-free feedstock showed better fermentability (87% of theoretical yield) despite containing higher concentration of known inhibitors. The ethanol yield from the hydrolysate prepared from a bark-containing wood sample could be improved to 81% by an extra stage acid hydrolysis (121 degrees C for 1 h in 3% sulfuric acid). This extra stage acid hydrolysis and steam explosion at higher severity conditions seem to improve the fermentability of the hydrolysates by transforming certain inhibitory compounds present in the hydrolysates prepared from the bark-containing feedstock and thus lowering their inhibitory effect on the yeast used for the ethanol fermentation.  相似文献   

2.
The hydrolysis which converts polysaccharides to the fermentable sugars for yeast’s lingocellulosic ethanol production also generates byproducts which inhibit the ethanol production. To investigate the extent to which inhibitory compounds affect yeast’s growth and ethanol production, fermentations by Saccharomyces cerevisiae K35 were investigated in various concentrations of acetic acid, furfural, 5-hydroxymethylfurfural (5-HMF), syringaldehyde, and coumaric acid. Fermentation in hydrolysates from yellow poplar and waste wood was also studied. After 24 h, S. cerevisiae K35 produced close to theoretically predicted ethanol yields in all the concentrations of acetic acid tested (1 ∼ 10 g/L). Both furans and phenolics inhibited cell growth and ethanol production. Ethanol yield, however, was unaffected, even at high concentrations, except in the cases of 5 g/L of syringaldehyde and coumaric acid. Although hydrolysates contain various toxic compounds, in their presence, S. Cerevisiae K35 consumed close to all the available glucose and yielded more ethanol than theoretically predicted. S. Cerevisiae K35 was demonstrated to have high tolerance to inhibitory compounds and not to need any detoxification for ethanol production from hydrolysates.  相似文献   

3.

Background  

Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their (i) ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii) resistance against inhibitors present in lignocellulosic hydrolysates, (iii) their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). The feedstock hydrolysates were generated in two manners: (i) thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii) a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated.  相似文献   

4.
The effect of the H2SO4 concentration in the hydrolysis of sunflower‐stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemicellulose at the acid concentration of 0.5 mol/L was achieved; whereas an acid concentration of 2.5 mol/L was needed to reach the maximum value in the conversion of the cellulose fraction. The analysis of the hydrolysis kinetics has enabled to determine the apparent reaction order, which was 1.3. The hydrolysates from hydrolysis process with H2SO4 0.5 mol/L, once detoxified, were fermented at pH 5.5, temperatures 30, 40, and 50ºC with the yeast Hansenula polymorpha (ATCC 34438), resulting in a sequential uptake of sugars. In relation to ethanol and xylitol yields, the best results were observed at 50°C ( = 0.11 g/g;  = 0.12 g/g). Instantaneous xylitol yields were higher than in ethanol, at the three temperatures essayed. Different phenolic compounds were analyzed in the hydrolysates; hydroxytyrosol was the most abundant (3.79 mg/L). The recovery of these compounds entails the elimination of inhibitors in the fermentation process and the production of high value‐added antioxidant products.  相似文献   

5.
In order to investigate the possibility of using waste mushroom logs as a biomass resource for alternative energy production, the chemical and physical characteristics of normal wood and waste mushroom logs were examined. Size reduction of normal wood (145 kW h/tone) required significantly higher energy consumption than waste mushroom logs (70 kW h/tone). The crystallinity value of waste mushroom logs was dramatically lower (33%) than normal wood (49%) after cultivation by Lentinus edodes as spawn. Lignin, an enzymatic hydrolysis inhibitor in sugar production, decreased from 21.07% to 18.78% after inoculation of L. edodes. Total sugar yields obtained by enzyme and acid hydrolysis were higher in waste mushroom logs than in normal wood. After 24h fermentation, 12 g/L ethanol was produced on waste mushroom logs, while normal wood produced 8 g/L ethanol. These results indicate that waste mushroom logs are economically suitable lignocellulosic material for the production of fermentable sugars related to bioethanol production.  相似文献   

6.
Beech sawdust was subjected to autohydrolysis (200 degrees C) and acid hydrolysis in the presence of HCl and AlCl3. HCl-catalyzed hydrolysis was favourable method to hydrolysis beech sawdust hemicellulose. The crude and pretreated hydrolysates were tested as substrates for ethanol production by Fusarium sp. 27. Reducing sugars were fermented to ethanol by the strain Fusarium sp. 27 in yield 0.22 g ethanol per gram reducing sugars consumed.  相似文献   

7.
The information presented in this publication represents current research findings on the production of glucose and xylose from straw and subsequent direct fermentation of both sugars to ethanol. Agricultural straw was subjected to thermal or alkali pulping prior to enzymatic saccharification. When wheat straw (WS) was treated at 170 degrees C for 30-60 min at a water-to-solids ratio of 7:1, the yield of cellulosic pulp was 70-82%. A sodium hydroxide extration yielded a 60% cellulosic pulp and a hemicellulosic fraction available for fermentation to ethanol. The cellulosic pulps were subjected to cellulase hydrolysis at 55 degrees C for production of sugars to support a 6-C fermentation. Hemicellulose was recovered from the liquor filtrates by acid/alcohol precipitation followed by acid hydrolysis to xylose for fermentation. Subsequent experiments have involved the fermentation of cellulosic and hemicelluosic hydrolysates to ethanol. Apparently these fermentations were inhibited by substances introduced by thermal and alkali treatment of the straws, because ethanol efficiencies of only 40-60% were achieved. Xylose from hydrolysis of wheat straw pentosans supported an ethanol fermentation by Pachysolen tannophilus strain NRRL 2460. This unusual yeast is capable of producing ethanol from both glucose and xylose. Ethanol yields were not maximal due to deleterious substances in the WS hydrolysates.  相似文献   

8.
Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF) values during hydrolysis. Xylose and glucose concentrations in hydrolysates were highest with maleic acid. Oxalic acid gave the next highest followed by sulfuric acid. This ranking was particularly true at low CSF values. The concentrations of glucose and xylose increased with oxalic and sulfuric acid pretreatments as the CSF increased, but they never attained the levels observed with maleic acid. Among sulfuric, oxalic and maleic acid treatments, the amount of xylose released as xylooligosaccharide was highest with sulfuric acid. The fraction of xylooligosaccharide was lowest with the maleic acid and the oligosaccharide fraction with oxalic acid fell in between. Furfural and hydroxymethyl furfural levels were also highest with maleic acid. In subsequent fermentations with pretreated biomass, the ethanol concentration was maximal at 19.2 g/l at CSF 1.9 when maleic acid was used as the pretreatment catalyst. This corresponded to an ethanol volumetric production rate of 0.27 g ethanol/l per h. This was the same condition showing the highest xylose production in following pretreatment with various acid catalysts. These findings suggest that maleic and oxalic dicarboxylic acids degrade hemicelluloses more efficiently than does sulfuric acid.  相似文献   

9.
Effective construction and demolition (C&D) waste management is indispensable to the attainment of sustainable construction. Many endeavors so far have been made to assess C&D waste management. However, the majority of efforts have been attempted to investigate C&D waste management from an economic point of view, while very few studies have been focused on the environmental and social aspects, which are imperative to promote effective C&D waste management. This paper identifies 30 key indicators affecting the overall effectiveness of C&D waste management from a holistic perspective and develops a C&D waste management effectiveness assessment framework by integrating the key indicators identified. The assessment framework not only deepens understanding of effectiveness of C&D waste management, but also provides a concrete base for future research in assessing the effectiveness of C&D waste management quantitatively.  相似文献   

10.
Cassava pulp was hydrolyzed with acids or enzymes. A high glucose concentration (>100 g/L) was obtained from the hydrolysis with 1 N HCl at 121 °C, 15 min or with cellulase and amylases. While a high glucose yield (>0.85 g/g dry pulp) was obtained from the hydrolysis with HCl, enzymatic hydrolysis yielded only 0.4 g glucose/g dry pulp. These hydrolysates were used as the carbon source in fermentation by Rhizopus oryzae NRRL395. R. oryzae could not grow in media containing the hydrolysates treated with 1.5 N H2SO4 or 2 N H3PO4, but no significant growth inhibition was found with the hydrolysates from HCl (1 N) and enzyme treatments. Higher ethanol yield and productivity were observed from fermentation with the hydrolysates when compared with those from fermentation with glucose in which lactic acid was the main product. This was because the extra organic nitrogen in the hydrolysates promoted cell growth and ethanol production.  相似文献   

11.
The combined effect of simultaneous saccharification and fermentation and separate hydrolysis and fermentation (SHF) for ethanol production by Kluyveromyces marxianus 6556 was studied using two lignocellulosic feedstocks viz., corncob and soybean cake. The ethanologenic efficiency of K. marxianus 6556 was observed as 28% (theoretical yield) in a fermentation medium containing glucose, but, there was no ethanol production by cells grown on xylose. A maximum sugar release of 888 mg/g corncob and 552 mg/g soybean cake was achieved through acid hydrolysis pretreatment. Furthermore, corncob and soybean cake treated with commercial cellulase (100 IU for 48 h) from Trichoderma reesei yielded reducing sugars of 205 and 100 mg/g, respectively. Simultaneous saccharification and fermentation resulted in highest ethanol production of 5.68 g/l on corncob and 2.14 g/l on soybean cake after 48 h of incubation. On the contrary, the presence of inhibitors decreased the overall ethanol yield in the hydrolysates obtained through SHF of corncob and soybean cake.  相似文献   

12.
Huang H  Guo X  Li D  Liu M  Wu J  Ren H 《Bioresource technology》2011,102(16):7486-7493
Compounds inhibitory to enzymatic hydrolysis and fermentation are generated from neutral steam exploded corn stover in the process of producing bio-ethanol. In this study, weak acids were identified as main yeast inhibitors, while phenols and aldehyde contribute to the inhibition to a lower degree. Main weak acids in hydrolysates are acetic acid and formic acid, for which critical levels for yeast inhibition are 6 and 4 g/L, respectively. The inhibitory effect of these compounds can be greatly overcome by increasing pH of hydrolysates to 6.0-9.0, but there is a risk of bacterial contamination when fermenting at high pH. The relationship of pH, total solids of hydrolysates, fermentation and contamination was studied in detail. Results indicate that the contamination by bacteria when fermenting at high pH can be prevented effectively using hydrolysates with total solids of more than 20%. Meanwhile, ethanol yield is improved significantly.  相似文献   

13.
Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.  相似文献   

14.
Sorghum straw is a waste that has been studied scarcely. The main application is its use as raw material for xylose production. Xylose is a hemicellulosic sugar mainly used for its bioconversion toward xylitol. An alternative use could be its conversion toward furfural. The objective of this work was to study the furfural production by hydrolysis of sorghum straw with phosphoric acid at 134 degrees C. Several concentrations of H(3)PO(4) in the range 2-6% and reaction time (range 0-300 min) were evaluated. Kinetic parameters of mathematical models for predicting the concentration of xylose, glucose, arabinose, acetic acid and furfural in the hydrolysates were found. Optimal conditions for furfural production by acid hydrolysis were 6% H(3)PO(4) at 134 degrees C for 300 min, which yielded a solution with 13.7 g furfural/L, 4.0 g xylose/L, 2.9 g glucose/L, 1.1g arabinose/L and 1.2g acetic acid/L. The furfural yield of the process was 0.1336 g furfural/g initial dry matter was obtained. The results confirmed that sorghum straw can be used for furfural production when it is hydrolyzed using phosphoric acid.  相似文献   

15.
Bacteroides polypragmatus type strain GP4 was adapted to grow in the presence of 3.5% (w/v) ethanol by successive transfers into 1% (w/v)d-xylose media supplemented with increasing concentrations of ethanol. The maximum specific growth rate of the ethanol-adapted culture (=0.30 h-1) was not affected by up to 2% (w/v) ethanol but that of the non-adapted strain declined by about 50%. The growth rate of both cultures was limited by nutrient(s) contained in yeast extract. The ethanol yield of the adapted culture (1.01 mol/mol xylose) was higher than that (0.80 mol/mol xylose) of the non-adapted strain. The adapted culture retained the ability to simultaneously ferment pentose and hexose sugars, and moreover it was not inhibited by xylose concentrations of 7–9% (w/v). This culture also readily fermented hemicellulose hydrolysates obtained by mild acid hydrolysis of either hydrogen fluoride treated or steam exploded Aspen wood. The ethanol yield from the fermentation of the hydrolysates was comparable to that obtained from xylose.This paper is issued as NRCC No. 26338  相似文献   

16.
A life cycle assessment (LCA) of various end‐of‐life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency's Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end‐of‐life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal‐fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions.  相似文献   

17.
Different agricultural wastes, namely tobacco stalk (TS), cotton stalk (CS), sunflower stalk (SS), and wheat straw (WS), were used for the production of xylooligosaccharide (XO). XO production was performed by acid hydrolysis of xylan, which was obtained by alkali extraction from these agricultural wastes. The major component of these agricultural wastes was determined as cellulose (30-42%), followed by xylan (20%) and lignin (20-27%). Xylans from these wastes had mainly xylose (85-96%) with small amount of glucose, while wheat straw xylan contained also arabinose. The best xylan conversion into XOs was achieved with 0.25 M H2SO4 with 30-min reaction time. Under these conditions, the XO yield was between 8% and 13%. The yield of XOs depends on both acid concentration and hydrolysis time, but the yield of monosaccharide depends on the structure and composition of xylan besides acid concentration and the time. The more branched xylan, WSX, gave the highest monosaccharide (∼16%) and furfural (∼49 mg/100 g xylan) yield. This research showed that all xylans from selected agricultural wastes generated XOs with similar profiles, and these oligosaccharides could be used as functional food ingredients or soluble substrates for xylanases.  相似文献   

18.
Aims: To evaluate sugar recoveries and fermentabilities of eight lignocellulosic raw materials following mild acid pretreatment and enzyme hydrolysis using a recombinant strain of Zymomonas mobilis. Methods and Results: Dilute acid pretreatment (2% H2SO4) with 10% (w/v) substrate loading was performed at 134°C for 60 min followed by enzyme hydrolysis at 60°C. The results demonstrated that hydrolysis of herbaceous raw materials resulted in higher sugar recoveries (up to 60–75%) than the woody sources (<50%). Fermentation studies with recombinant Z. mobilis ZM4 (pZB5) demonstrated that final ethanol concentrations and yields were also higher for the herbaceous hydrolysates. Significant reduction in growth rates and specific rates of sugar uptake and ethanol production occurred for all hydrolysates, with the greatest reductions evident for woody hydrolysates. Further studies on optimization of enzyme hydrolysis established that higher sugar recoveries were achieved at 50°C compared to 60°C following acid pretreatment. Conclusions: Of the various raw materials evaluated, the highest ethanol yields and productivities were achieved with wheat straw and sugarcane bagasse hydrolysates. Sorghum straw, sugarcane tops and Arundo donax hydrolysates were similar in their characteristics, while fermentation of woody hydrolysates (oil mallee, pine and eucalyptus) resulted in relatively low ethanol concentrations and productivities. The concentrations of a range of inhibitory compounds likely to have influence the fermentation kinetics were determined in the various hydrolysates. Significance and Impact of the Study: The study focuses on lignocellulosic materials available for second generation ethanol fermentations designed to use renewable agricultural/forestry biomass rather than food‐based resources. From the results, it is evident that relatively good sugar and ethanol yields can be achieved from some herbaceous raw materials (e.g. sugarcane bagasse and sorghum straw), while much lower yields were obtained from woody biomass.  相似文献   

19.
Significant amounts of cell wall degrading (CWD) enzymes are required to degrade lignocellulosic biomass into its component sugars. One strategy for reducing exogenous enzyme production requirements is to produce the CWD enzymes in planta. For this work, various CWD enzymes were expressed in maize (Zea mays). Following growth and dry down of the plants, harvested maize stover was tested to determine the impact of the expressed enzymes on the production of glucose and xylose using different exogenous enzyme loadings. In this study, a consolidated pretreatment and hydrolysis process consisting of a moderate chemical pretreatment at temperatures below 75°C followed by enzymatic hydrolysis using an in-house enzyme cocktail was used to evaluate engineered transgenic feedstocks. The carbohydrate compositional analysis showed no significant difference in the amounts of glucan and xylan between the transgenic maize plants expressing CWD enzyme(s) and the control plants. Hydrolysis results demonstrated that transgenic plants expressing CWD enzymes achieved up to 141% higher glucose yield and 172% higher xylose yield over the control plants from enzymatic hydrolysis under the experimental conditions. The hydrolytic performance of a specific xylanase (XynA) expressing transgenic event (XynA.2015.05) was heritable in the next generation, and the improved properties can be achieved even with a 25% reduction in exogenous enzyme loading. Simultaneous saccharification and fermentation of biomass hydrolysates from two different transgenic maize lines with yeast (Saccharomyces cerevisiae D5A) converted 65% of the biomass glucan into ethanol, versus only a 42% ethanol yield with hydrolysates from control plants, corresponding to a 55% improvement in ethanol production.  相似文献   

20.
A complete process for the production of bioethanol and fungal biomass from spruce and birch was investigated. The process included milling, pretreatment with N-methylmorpholine-N-oxide (NMMO), washing of the pretreated wood, enzymatic hydrolysis, and cultivation of the zygomycetes fungi Mucor indicus. Investigated factors included wood chip size (0.5-16 mm), pretreatment time (1-5 h), and scale of the process from bench-scale to 2 m high air-lift reactor. Best hydrolysis yields were achieved from wood chips below 2 mm after 5 h of pretreatment. Ethanol yields (mg/g wood) of 195 and 128 for spruce, and 175 and 136 for birch were achieved from bench-scale and airlift, respectively. Fungal biomass yields (mg/g wood) of 103 and 70 for spruce, and 86 and 66 for birch from bench scale and airlift respectively were simultaneously achieved. NMMO pretreatment and cultivation with M. indicus appear to be a good alternative for ethanol production from birch and spruce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号