首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current assessments of the commercial viability and productivity potential of microalgae biofuels have been forced to extrapolate small-scale research data. The resulting analyses are not representative of microalgae cultivation and processing at industrial scale. To more accurately assess the current near-term realizable, large-scale microalgae productivity potential in the USA, this paper presents a model of microalgae growth derived from industrial-scale outdoor photobioreactor growth data. This model is combined with thermal models of the photobioreactor system and 15?years of hourly historical weather data from 864 locations in the USA to more accurately assess the current productivity potential of microalgae. The resulting lipid productivity potential of Nannochloropsis is presented in the form of a map that incorporates various land availability models to illustrate the near-term feasible cultivation locations and corresponding productivity potentials for the USA. The discussion focuses on a comparison of model results with productivity potentials currently reported in literature, an assessment demonstrating the scale of Department of Energy 2030 alternative fuel goals, and a critical comparison of productivity potential in several key regions of the USA.  相似文献   

2.
Previous assessments of the economic feasibility and large-scale productivity of microalgae biofuels have not considered the impacts of land and carbon dioxide (CO2) availability on the scalability of microalgae-based biofuels production. To accurately assess the near-term productivity potential of large-scale microalgae biofuel in the USA, a geographically realized growth model was used to simulate microalgae lipid yields based on meteorological data. The resulting lipid productivity potential of Nannochloropsis under large-scale cultivation is combined with land and CO2 resource availability illustrating current geographically feasible production sites and corresponding productivity in the USA. Baseline results show that CO2 transport constraints will limit US microalgae-based bio-oil production to 4 % of the 2030 Department of Energy (DOE) alternative fuel goal. The discussion focuses on synthesis of this large-scale productivity potential results including a sensitivity analysis to land and CO2 resource assumptions, an evaluation of previous modeling efforts, and their assumptions regarding the transportation of CO2, the feasibility of microalgae to meet DOE 2030 alternative fuel goals, and a comparison of the productivity potential in several key regions of the USA.  相似文献   

3.
Algal biofuels     
The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.  相似文献   

4.
Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important prerequisite for their successful cultivation as a bioenergy source, a process that can be compared to the initial selection and domestication of agricultural crops. We developed standard protocols for the isolation and cultivation for a range of marine and brackish microalgae. By comparing growth rates and lipid productivity, we assessed the potential of subtropical coastal and brackish microalgae for the production of biodiesel and other oil-based bioproducts. This study identified Nannochloropsis sp., Dunaniella salina and new isolates of Chlorella sp. and Tetraselmis sp. as suitable candidates for a multiple-product algae crop. We conclude that subtropical coastal microalgae display a variety of fatty acid profiles that offer a wide scope for several oil-based bioproducts, including biodiesel and omega-3 fatty acids. A biorefinery approach for microalgae would make economical production more feasible but challenges remain for efficient harvesting and extraction processes for some species.  相似文献   

5.
In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L?1 d?1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.  相似文献   

6.
Microalgae have been exploited for biofuel generation in the current era due to its enormous energy content, fast cellular growth rate, inexpensive culture approaches, accumulation of inorganic compounds, and CO2 sequestration. Currently, research is ongoing towards the advancement of the microalgae cultivation parameters to enhance the biomass yield. The main objective of this study was to delineate the progress of physicochemical parameters for microalgae cultivation such as gaseous transfer, mixing, light demand, temperature, pH, nutrients and the culture period. This review demonstrates the latest research trends on mass transfer coefficient of different microalgae culturing reactors, gas velocity optimization, light intensity, retention time, and radiance effects on microalgae cellular growth, temperature impact on chlorophyll production, and nutrient dosage ratios for cellulosic metabolism to avoid nutrient deprivation. Besides that, cultivation approaches for microalgae associated with mathematical modeling for different parameters, mechanisms of microalgal growth rate and doubling time have been elaborately described. Along with that, this review also documents potential lipid-carbohydrate-protein enriched microalgae candidates for biofuel, biomass productivity, and different cultivation conditions including open-pond cultivation, closed-loop cultivation, and photobioreactors. Various photobioreactor types, the microalgae strain, productivity, advantages, and limitations were tabulated. In line with microalgae cultivation, this study also outlines in detail numerous biofuels from microalgae.  相似文献   

7.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

8.
Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.  相似文献   

9.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

10.
光生物反应器设计中,气体分布器对微藻生长有较大的影响,尤其是在鼓泡式光生物反应器中更为显著。实验考察了采用氧化铝烧制的多孔气体分布器的5L鼓泡式光生物反应器中通气速率、CO2 浓度对小球藻LICME002生物量、叶绿素含量、油脂积累的影响。对该气体分布器下的CO2浓度和通气速率对小球藻的作用机理进行了初步的探讨。结果表明,CO2浓度为3%时,该株微藻生物量、叶绿素、油脂积累的最佳;CO2浓度超过6%时各项指标显著下降。通过对0.1vvm,0.4vvm,0.7vvm、1.0vvm的通气速条件下的各项指标的分析,确定最佳通气条件为0.4vvm。结论显示,在最佳通气速率和CO2浓度下,微藻生物量能达到1.52g/L,油脂含量达到31.5%。  相似文献   

11.
The accumulation of atmospheric CO2, primarily due to combustion of fossil fuels, has been implicated in potential global climate change. The high rate of CO2 bioremediation by microalgae has emerged as a favourable method for reducing coal-fired power plant emissions. However, coal-fired power station flue gas contains other chemicals such as SOx which can inhibit microalgal growth. In the current study, the effect of untreated flue gas as a source of inorganic carbon on the growth of Tetraselmis in a 1000 L industrial-scale split-cylinder internal-loop airlift photobioreactor was examined. The culture medium was recycled after each harvest. Tetraselmis suecica grew very well in this airlift photobioreactor during the 7-month experiment using recycled medium from an electroflocculation harvesting unit. Increased medium SO4 2? concentration as high as 870 mg SO4 2??L?1 due to flue gas addition and media recycling had no negative effect on the overall growth and productivity of this alga. The potential organic biomass productivity and carbon sequestration using an industrial-scale airlift PBR at International Power Hazelwood, Gippsland, Victoria, Australia, are 178.9?±?30 mg L?1 day?1 and 89.15?±?20 mg?‘C’?L?1 day?1, respectively. This study clearly indicates the potential of growing Tetraselmis on untreated flue gas and using recycled medium for the purpose of biofuel and CO2 bioremediation.  相似文献   

12.
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.  相似文献   

13.
This study investigates the scaling of photobioreactor productivity based on the growth of Nannochloropsis salina incorporating the effects of direct and diffuse light. The scaling and optimization of photobioreactor geometry was analyzed by determining the growth response of a small-scale system designed to represent a core sample of a large-scale photobioreactor. The small-scale test apparatus was operated at a variety of light intensities on a batch time scale to generate a photosynthetic irradiance (PI) growth dataset, ultimately used to inform a PI growth model. The validation of the scalability of the PI growth model to predict productivity in large-scale systems was done by comparison with experimental growth data collected from two geometrically different large-scale photobioreactors operated at a variety of light intensities. For direct comparison, the small-scale and large-scale experimental systems presented were operated similarly and in such a way to incorporate cultivation relevant time scales, light intensities, mixing, and nutrient loads. Validation of the scalability of the PI growth model enables the critical evaluation of different photobioreactor geometries and design optimization incorporating growth effects from diffuse and direct light. Discussion focuses on the application of the PI growth model to assess the effect of diffuse light growth compared to direct light growth for the evaluation of photobioreactors followed by the use of the model for photobioreactor geometry optimization on the metric of areal productivity.  相似文献   

14.
The microalgae Chlorella protothecoides UTEX 25, Chlorella sp. TISTR 8991, and Chlorella sp. TISTR 8990 were compared for use in the production of biomass and lipids under photoautotrophic conditions. Chlorella sp. TISTR 8990 was shown to be potentially suitable for lipid production at 30°C in a culture medium that contained only inorganic salts. For Chlorella sp. TISTR 8990 in optimal conditions in a stirred tank photobioreactor, the lipid productivity was 2.3 mg L−1 h−1 and after 14 days the biomass contained more than 30% lipids by dry weight. To attain this, the nitrogen was provided as KNO3 at an initial concentration of 2.05 g L−1 and chelated ferric iron was added at a concentration of 1.2 × 10−5 mol L−1 on the ninth day. Under the same conditions in culture tubes (36 mm outer diameter), the biomass productivity was 2.8-fold greater than in the photobioreactor (0.125 m in diameter), but the lipid productivity was only 1.2-fold higher. Thus, the average low-light level in the photobioreactor actually increased the biomass specific lipid production compared to the culture tubes. A light-limited growth model closely agreed with the experimental profiles of biomass production, nitrogen consumption, and lipid production in the photobioreactor.  相似文献   

15.
Extraction of oil from microalgae for biodiesel production: A review   总被引:2,自引:0,他引:2  
The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion.  相似文献   

16.
Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24, which attained 60% lipid content after nitrogen starvation, was grown in a 20-L Flat Alveolar Panel photobioreactor to study the influence of irradiance and nutrient (nitrogen or phosphorus) deprivation on fatty acid accumulation. Fatty acid content increased with high irradiances (up to 32.5% of dry biomass) and following both nitrogen and phosphorus deprivation (up to about 50%). To evaluate its lipid production potential under natural sunlight, the strain was grown outdoors in 110-L Green Wall Panel photobioreactors under nutrient sufficient and deficient conditions. Lipid productivity increased from 117 mg/L/day in nutrient sufficient media (with an average biomass productivity of 0.36 g/L/day and 32% lipid content) to 204 mg/L/day (with an average biomass productivity of 0.30 g/L/day and more than 60% final lipid content) in nitrogen deprived media. In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum followed by a nitrogen deprived phase to boost lipid synthesis) the oil production potential could be projected to be more than 90 kg per hectare per day. This is the first report of an increase of both lipid content and areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. The experiments showed that this marine eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical areas.  相似文献   

17.
Microalgae can be used to produce versatile high-value fuels, such as methane, biodiesel, ethanol, or hydrogen gas. One of the most important factors that influence the economics of microalgae cultivation is the primary production of biomass per unit area. This is determined by productivity rates during cultivation, which are influenced by the local climate conditions (solar irradiation, temperature). To compare locations in different climate regions for microalgae cultivation, a mathematical model for an idealized closed photobioreactor was developed. The applied growth kinetics were based on theoretical maximum photon-conversion efficiencies (for the conversion of solar energy to chemical energy in the form of biomass). Known or estimated temperature effects for different algal strains were incorporated. The model was used to calculate hourly average areal productivity rates as well as annual primary production values under local conditions at seven example locations. Here, hourly weather data (solar irradiance and air temperature) were taken into account. According to these model calculations, maximum annual yields were achieved in regions with high irradiation and temperature patterns in or near the optimum range of the specific algal strain (here, desert and equatorial humid climates). The developed model can be used as a tool to assess and compare individual locations for microalgae cultivation.  相似文献   

18.
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate‐mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate‐amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate‐contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES‐2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85–90%), which is very suitable for bio‐alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES‐2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.  相似文献   

19.
夏令  胡春香 《水生生物学报》2016,40(6):1241-1248
为探索两株链带藻(Desmodesmus sp.T28-1和Desmodesmus sp.NMX451)在室外培养的最优氮源,首先在室内就不同氮源(尿素、硝酸钠、碳酸铵以及尿素和硝酸钠混合氮源)下微藻的生长和油脂积累做了研究,筛选出最优的混合氮源在室外进行了培养的可行性研究。室内研究结果表明两株链带藻在尿素下培养油脂含量最低,在铵氮下培养生物量最低。且NMX451在混合态氮下的油脂产率显著性的高于其他氮源下的油脂产率。对两株链带藻在混合氮源下的脂肪酸组分做进一步分析,结果表明油脂组分适合生物柴油生产要求,估算的生物柴油品质达到国际和国内生产标准。将两株链带藻置于室外140 L柱式反应器中用混合氮源进一步扩大培养,结果表明NMX451比T28-1的油脂含量和油脂产率高,生产成本更低,且脂肪酸组分更适宜生物柴油生产。研究表明用混合氮源在室外培养微藻是非常可行的培养方法,也说明NMX451比T28-1在生物柴油生产方面具有更好的潜力。  相似文献   

20.
A method of rapid determination of chlorophyll a and lipid contents of microalgae based on colorimetric analysis of the digital images of the microalgae is proposed. The color variation of microalgae during cultivation is evaluated by the brightness of the three primary colors (red, green, and blue). The brightness values of the three primary colors are modeled as two linear correlation functions (RGB model) for microalgal chlorophyll a and lipid contents, respectively. The chlorophyll a and lipid contents predicted by the proposed model are compared with that determined by the standard methods. The good agreement of the model predictions with experimental results is demonstrated with a squared correlation coefficient (R(2)) of 0.99 for chlorophyll a and lipid. The reliability of the RGB model was verified in real cultivations of the microalgae in a photobioreactor. Growth dynamics, contents of chlorophyll a and lipid corresponded very well with previously reported studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号