共查询到20条相似文献,搜索用时 93 毫秒
1.
基因组中重复序列的意义 总被引:1,自引:0,他引:1
从原核生物到真核生物,其基因组中的重复序列呈递增趋势.重复序列的作用也被各种实验所揭示.各种重复序列的类型与它在染色体上的分布密切相关.重复序列不是垃圾,而是影响着生命的进化、遗传、变异;同时它对基因表达、转录调控、染色体的构建以及生理代谢都起着不可或缺的作用.它们的功能及演化也正在被逐步阐明. 相似文献
2.
干旱、盐渍、低温等逆境胁迫会严重影响植物的正常生长发育,导致植物的许多响应基因被诱导表达,其蛋白质产物能够保护植物免受胁迫的伤害。色氨酸一天冬氨酸重复序列蛋白(wD40蛋自)在植物中广泛存在,参与植物体内众多代谢反应的调控,如花的发育、开花、花青素的生物合成、激素响应、渗透胁迫等。WD40蛋白含有40-60个氨基酸的保守的wD重复序列,其c末端为色氨酸.天冬氨酸(Trp-Asp,WD),形成一个p螺旋桨(p—propeller)结构,通过调节多蛋白复合体的组装而影响蛋白质与蛋白质、蛋白质与DNA间的相互作用。本文综述植物WD40蛋白响应逆境胁迫的调控作用。 相似文献
3.
神经富亮氨酸重复(neural leucine-rich repeat,NLRR)蛋白家族是一类进化上保守、功能多样的Ⅰ型跨膜蛋白.NLRR主要表达于神经组织,肺部、心脏、肝、肾也有微量表达.自1996年Taguchi在发育的小鼠神经系统中发现了新的LRR蛋白质mNLRR-1和mNLRR-2后,一系列含有类似结构的NLRR蛋白质在小鼠、大鼠、爪蟾、斑马鱼和人类等种属中被发现.NLRR蛋白家族成员同源性高,主要含有一些共同的蛋白质结构域:LRR(leucine-rich repeat)、AFR(amino-flanking region)、CFR(carboxy-flanking region)、IgC2(immunoglobulin-like C2 type domain)和FNⅢ(fibronectin type Ⅲ-like domain)等.迄今为止,已有实验证明NLRR作为细胞黏附分子或配体受体分子在神经发育与再生过程中发挥着重要作用.主要对NLRR的时空表达模式、结构及主要生物学功能等进行了综述. 相似文献
4.
5.
6.
重复序列几乎存在于所有生物的基因组中。\"肠道细菌基因间重复序列\"(Enterobacterial Repetitive Intergenic Consensus,ERIC)是主要存在于肠道细菌的一类基因间重复序列,也称为\"基因间重复单位\"(Intergenic Repetitive Unit,IRU)。ERIC(IRU)首先在大肠杆菌(Escherichia coli)中发现,后来又在多种其他细菌中发现。ERIC(IRU)长127bp,有的还有插入序列。绝大多数ERIC(IRU)都可以转录,mRNA形成茎环结构。ERIC(IRU)局限于基因组可转录区,即多顺反子操纵子基因间区域,或开放阅读框架上、下游非翻译区。ERIC(IRU)很可能调节侧翼基因(flanking gene)的表达。ERIC(IRU)高度保守,可能其变异受到自然选择压力的限制或它本身就可能是\"自私的DNA\"(selfish DNA)。Versalovic等建立起ERIC-PCR,它可以有效地同时平行分析不同生态系统的结构差异以及动态监测同一生态系统微生物群落结构的变化。近年来这一技术逐渐运用到对动物肠道菌群的研究上。 相似文献
7.
【目的】了解絮凝基因FLO1中重复DNA序列B和D对絮凝蛋白Flo1p功能的影响,为构建遗传稳定的最小絮凝功能基因奠定理论基础。【方法】通过PCR和融合PCR方法分别克隆到完整的絮凝基因FLO1、重复DNA序列B和D分别缺失的衍生基因FLO1b和FLO1d,分析这些基因在非絮凝酵母中表达对细胞絮凝特性的影响。【结果】与完整絮凝基因相比,重复DNA序列B和D分别缺失后对酵母细胞絮凝强度没有明显影响,但不同基因在酵母菌中表达产生的絮凝特性受环境因素,如甘露糖浓度和pH等的影响有明显差异。FLO1中重复DNA序列B和D缺失后,细胞絮凝特性受甘露糖抑制的敏感性降低;同时对环境pH的改变具有更广泛的适应性。【结论】重复DNA序列B和D对絮凝蛋白Flo1p结构和功能具有调控作用,二者缺失后,特别是D缺失后会使絮凝蛋白在极端酸碱环境下更稳定。 相似文献
8.
将系列缺失的HIV1长末端重复序列(LTR)和全长的gagORF置于痘苗病毒载体中,经同源重组和血球吸附试验,成功地构建了6株重组痘苗病毒。免疫印迹和免疫酶试验检测均表明,6株重组病毒的Gag蛋白表达量因LTR不同而有明显差异,表明HIV1的LTR及其下游基因置于痘病毒启动子控制下,在痘苗病毒中表达时有下述特点:(1)不同的痘苗病毒启动子与全长LTR相互作用,对gag基因表达有显著不同的调控效果;(2)NR序列对Gag蛋白表达没有明显影响;(3)EN序列不能被重组痘苗病毒表达系统识别;(4)TAR序列可提高Gag蛋白的表达量;(5)U5区及下游非翻译序列不影响Gag蛋白的表达。 相似文献
9.
发育调控信号蛋白Hh的研究进展邱嵘(解放军兰州医学高等专科学校,730020)洪水根(厦门大学细胞生物学研究室,361005)Hh蛋白是发育调控基因hedgehog(hh)的产物。hh基因是由Nisslein—volhard和Wieschaus(19... 相似文献
10.
11.
The 118 residue protein myotrophin is composed of four ankyrin repeats that stack linearly to form an elongated, predominantly α-helical structure. The protein folds via a two-state mechanism at equilibrium. The free energy change of unfolding in water (ΔGU-NH2O) is 5.8 kcal.mol−1. The chevron plot reveals that the folding reaction has a broad energy barrier and that it conforms to a two-state mechanism. The rate of folding in water (kfH2O) of 95 s−1 is several orders of magnitude slower than the value predicted by topological calculations. Proline mutants were used to show that the minor kinetic phases observed for myotrophin arise from heterogeneity of the ground states due to cis-trans isomerisation of prolyl as well as non-prolyl peptide bonds. Myotrophin is the first example of a naturally occurring ankyrin repeat protein that conforms to an apparent two-state mechanism at equilibrium and under kinetic conditions, making it highly suitable for high resolution protein folding studies. 相似文献
12.
Merz T Wetzel SK Firbank S Plückthun A Grütter MG Mittl PR 《Journal of molecular biology》2008,376(1):232-240
Full-consensus designed ankyrin repeat proteins (DARPins), in which randomized positions of the previously described DARPin library have been fixed, are characterized. They show exceptionally high thermodynamic stabilities, even when compared to members of consensus DARPin libraries and even more so when compared to naturally occurring ankyrin repeat proteins. We determined the crystal structure of a full-consensus DARPin, containing an N-capping repeat, three identical internal repeats and a C-capping repeat at 2.05 Å resolution, and compared its structure with that of the related DARPin library members E3_5 and E3_19. This structural comparison suggests that primarily salt bridges on the surface, which arrange in a network with almost crystal-like regularity, increase thermostability in the full-consensus NI3C DARPin to make it resistant to boiling. In the crystal structure, three sulfate ions complement this network. Thermal denaturation experiments in guanidine hydrochloride directly indicate a contribution of sulfate binding to the stability, providing further evidence for the stabilizing effect of surface-exposed electrostatic interactions and regular charge networks. The charged residues at the place of randomized residues in the DARPin libraries were selected based on sequence statistics and suggested that the charge interaction network is a hidden design feature of this protein family. Ankyrins can therefore use design principles from proteins of thermophilic organisms and reach at least similar stabilities. 相似文献
13.
Proteins containing stretches of repeating amino acid sequences are prevalent throughout nature, yet little is known about the general folding and assembly mechanisms of these systems. Here we propose myotrophin as a model system to study the folding of ankyrin repeat proteins. Myotrophin is folded over a large pH range and is soluble at high concentrations. Thermal and urea denaturation studies show that the protein displays cooperative two-state folding properties despite its modular nature. Taken together with previous studies on other ankyrin repeat proteins, our data suggest that the two-state folding pathway may be characteristic of ankyrin repeat proteins and other integrated alpha-helical repeat proteins in general. 相似文献
14.
The frequently observed ankyrin repeat motif represents a structural scaffold evolved for mediating protein-protein interactions. As such, these repeats modulate a diverse range of cellular functions. We thermodynamically characterized the heterodimeric GA-binding protein (GABP) alphabeta complex and focused specifically on the interaction mediated by the ankyrin repeat domain of the GABPbeta. Our isothermal titration calorimetric analysis of the interaction between the GABP subunits determined an association constant (K(A)) of 6.0 x 10(8) M(-1) and that the association is favorably driven by a significant change in enthalpy (DeltaH) and a minor change in entropy (-TDeltaS). A total of 16 GABPbeta interface residues were chosen for alanine scanning mutagenesis. The calorimetrically measured differences in the free energy of binding were compared to computationally calculated values resulting in a correlation coefficient r = 0.71. We identified three spatially contiguous hydrophobic and aromatic residues that form a binding free energy hot spot (DeltaDeltaG > 2.0 kcal/mol). One residue provides structural support to the hot spot residues. Three non-hot spot residues are intermediate contributors (DeltaDeltaG approximately 1.0 kcal/mol) and create a canopy-like structure over the hot spot residues to possibly occlude solvent and orientate the subunits. The remaining interface residues are located peripherally and have weak contributions. Finally, our mutational analysis revealed a significant entropy-enthalpy compensation for this interaction. 相似文献
15.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism. 相似文献
16.
《Critical reviews in biochemistry and molecular biology》2013,48(4):318-330
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies. 相似文献
17.
The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules 总被引:10,自引:0,他引:10
Miller MK Bang ML Witt CC Labeit D Trombitas C Watanabe K Granzier H McElhinny AS Gregorio CC Labeit S 《Journal of molecular biology》2003,333(5):951-964
CARP, ankrd-2/Arpp, and DARP, are three members of a conserved gene family, referred to here as MARPs (muscle ankyrin repeat proteins). The expression of MARPs is induced upon injury and hypertrophy (CARP), stretch or denervation (ankrd2/Arpp), and during recovery following starvation (DARP), suggesting that they are involved in muscle stress response pathways. Here, we show that MARP family members contain within their ankyrin repeat region a binding site for the myofibrillar elastic protein titin. Within the myofibril, MARPs, myopalladin, and the calpain protease p94 appear to be components of a titin N2A-based signaling complex. Ultrastructural studies demonstrated that all three endogenous MARP proteins co-localize with I-band titin N2A epitopes in adult heart muscle tissues. In cultured fetal rat cardiac myocytes, passive stretch induced differential distribution patterns of CARP and DARP: staining for both proteins was increased in the nucleus and at the I-band region of myofibrils, while DARP staining also increased at intercalated discs. We speculate that the myofibrillar MARPs are regulated by stretch, and that this links titin-N2A-based myofibrillar stress/strain signals to a MARP-based regulation of muscle gene expression. 相似文献
18.
Mun JY Gulick J Robbins J Woodhead J Lehman W Craig R 《Journal of molecular biology》2011,410(2):214-748
Myosin-binding protein C (MyBP-C) is an ∼ 130-kDa rod-shaped protein of the thick (myosin containing) filaments of vertebrate striated muscle. It is composed of 10 or 11 globular 10-kDa domains from the immunoglobulin and fibronectin type III families and an additional MyBP-C-specific motif. The cardiac isoform cMyBP-C plays a key role in the phosphorylation-dependent enhancement of cardiac function that occurs upon β-adrenergic stimulation, and mutations in MyBP-C cause skeletal muscle and heart diseases. In addition to binding to myosin, MyBP-C can also bind to actin via its N-terminal end, potentially modulating contraction in a novel way via this thick-thin filament bridge. To understand the structural basis of actin binding, we have used negative stain electron microscopy and three-dimensional reconstruction to study the structure of F-actin decorated with bacterially expressed N-terminal cMyBP-C fragments. Clear decoration was obtained under a variety of salt conditions varying from 25 to 180 mM KCl concentration. Three-dimensional helical reconstructions, carried out at the 180-mM KCl level to minimize nonspecific binding, showed MyBP-C density over a broad portion of the periphery of subdomain 1 of actin and extending tangentially from its surface in the direction of actin's pointed end. Molecular fitting with an atomic structure of a MyBP-C Ig domain suggested that most of the N-terminal domains may be well ordered on actin. The location of binding was such that it could modulate tropomyosin position and would interfere with myosin head binding to actin. 相似文献
19.
Garcion C Guilleminot J Kroj T Parcy F Giraudat J Devic M 《The Plant journal : for cell and molecular biology》2006,48(6):895-906
EMB506 is a chloroplast protein essential for embryo development, the function of which is unknown. A two-hybrid interaction screen was performed to provide insight into the role of EMB506. A single interacting partner, AKRP, was identified among a cDNA library from immature siliques. The AKR gene (Zhang et al., 1992, Plant Cell 4, 1575-1588) encodes a protein containing five ankyrin repeats, very similar to EMB506. Protein truncation series demonstrated that both proteins interact through their ankyrin domains. Using reverse genetics, we showed that loss of akr function resulted in an embryo-defective (emb) phenotype indistinguishable from the emb506 phenotype. Transient expression of the signal peptide of AKRP fused to green fluorescent protein demonstrated the chloroplast localization of AKRP. The ABI3 promoter was used to express AKR in a seed-specific manner in order to analyse the post-embryonic effect of AKR loss of function in akr/akr seedlings. Homozygous fertile and viable akr/akr plants were obtained. These plants exhibited mild to severe defects in chloroplast and leaf cellular organization. We conclude that EMB506 and AKRP are involved in crucial and tightly controlled events in plastid differentiation linked to cell differentiation, morphogenesis and organogenesis during the plant life cycle. 相似文献
20.
Proteins consisting of repeating amino acid motifs are abundant in all kingdoms of life, especially in higher eukaryotes. Repeat-containing proteins self-organize into elongated non-globular structures. Do the same general underlying principles that dictate the folding of globular domains apply also to these extended topologies? Using a simplified structure-based model capturing a perfectly funneled energy landscape, we surveyed the predicted mechanism of folding for ankyrin repeat containing proteins. The ankyrin family is one of the most extensively studied classes of non-globular folds. The model based only on native contacts reproduces most of the experimental observations on the folding of these proteins, including a folding mechanism that is reminiscent of a nucleation propagation growth. The confluence of simulation and experimental results suggests that the folding of non-globular proteins is accurately described by a funneled energy landscape, in which topology plays a determinant role in the folding mechanism. 相似文献