首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
活体电穿孔法基因导入技术   总被引:2,自引:0,他引:2  
活体电穿孔法(invivoelectroporation)可将外源基因有效导入靶组织或器官,导入效率较高,并且可在多种组织器官上应用。近年来活体电穿孔法用于转基因研究的报道不断增多,在基因治疗方面的优势也日趋显著,是一种很好的活体基因导入方法 。  相似文献   

2.
基因治疗中外源基因的导入   总被引:1,自引:0,他引:1  
基因治疗是将遗传物质导入靶细胞以达到治疗疾病的目的,目前基因治疗研究中的主要障碍是如何格外源基因导入靶细胞。本介绍基因治疗的原理和外源基因导入靶细胞时的常用方法,包括显微注射法、电穿孔法、基因枪粒子轰击法等。对基因治疗的现状、存在的问题及未来发展前景作了简要探讨。  相似文献   

3.
糖尿病基因治疗的新进展   总被引:3,自引:2,他引:1  
目前,糖尿病的基因治疗主要分为替代基因治疗、免疫基因治疗和调节基因治疗三部分.近年来,随着人们对糖尿病本质的深层次揭示和现代分子生物学手段的发展,糖尿病基因治疗的内容不断增加.如:对K细胞的新认识,发现了胰腺十二指肠同源异形盒基因1(PDX-1)的新价值及单链胰岛素类似物基因的构建成功等.另外,还利用各种方法来提高转染效率,增加安全性.如使用腺病毒(HD)载体,应用电穿孔法(electroporation)等.  相似文献   

4.
基因治疗肝脏疾病的新策略已引起高度关注,在肝病的基因治疗中,最关键的是如何将治疗基因特异性地导入肝细胞中并适当表达.在过去的二十多年里,受体介导的基因给药系统广泛用于肝靶向基因递送,但一些非病毒载体的基因传递效率不高.本文综述了目前最常用的非病毒载体,包括其理化性质、优点和局限性,基因递送作用机理以及修饰后在肝靶向基因治疗中的应用,并综述了在肝细胞基因传递中常用的电穿孔技术和流体力学注射法等物理方法以及如何实现其最优化的转染率.  相似文献   

5.
非病毒载体介导的外源基因在哺乳动物骨骼肌细胞中的表达往往受限于基因转移效率的低下.本文利用电穿孔为基因转移方法,研究了人对氧磷酶基因(PON1)在原代培养的小鼠骨骼肌成肌细胞和成熟肌管中的转移与表达.在上述细胞中加入PON1的真核表达质粒后实施一定条件的电穿孔,通过测定不同时间点培养基与细胞裂解液中芳香酯酶活性的变化以衡量PON1的表达与分泌.结果显示,PON1在成肌细胞中表达的最佳电穿孔条件为800 V/cm, 20 ms and 50 μF;在肌管中为700 V/cm, 20 ms and 50 μF.在此条件下,细胞存活率均达75%以上,且表达的蛋白均可有效分泌.RT PCR分析同样验证了PON1 mRNA在骨骼肌细胞中的高效表达.电穿孔介导的PON1基因表达效率显著高于传统的基因转移方法如磷酸钙法和阳离子脂质体法.因此,以不同分化阶段的骨骼肌细胞为靶细胞,通过电穿孔介导外源基因表达切实可行,并可能在细胞工程与基因治疗等领域均具有潜在的应用前景.  相似文献   

6.
为了探索定点整合基因治疗血友病B的可行性,开展了在HeLa细胞中的hFIX组成型表达研究.同源重组载体p921构建后,电穿孔转入细胞,经过GCV和G418克隆选择,通过特异性的PCR证实了同源重组的发生,hCMV启动子定点替换hFIX基因在非肝细胞中可以被启动子hCMV转录表达,显示人为进行基因表达调控的可行性.  相似文献   

7.
脉冲电场利用方波直流脉冲发生器改变细胞膜的通透性,并在细胞膜上形成纳米级细孔,其被称为电穿孔是一种新型微创技术,分为可逆电穿孔(reversible electroporation)及不可逆电穿孔(irreversible electroporation)。在过去的四十年,电穿孔大量的实验研究及其自身的优点及先进性,使电穿孔相关的技术已被允许应用与临床。目前临床和实验中应用电穿孔的化疗药物已有十余种,通过电穿孔进行基因转染及DNA疫苗的研发已取得巨大成功。尤其近几年发展的非热能的不可逆电穿孔对实体肿瘤的消融作用,为肿瘤治疗提供新的思路,因其比其他局部治疗方法:具有治疗时间短,减少间接热损伤,对毗邻主要血管的肿瘤组织有消融能力等优点引起了对不可逆电穿孔巨大的临床研究兴趣。本文就电穿孔的基本理论,电化学治疗,基因电转染及不可逆电穿孔的临床应用进行探讨。  相似文献   

8.
用脂质体法和电穿孔法分别转染Cos-7,Vero和Namalwa细胞。发现脂质体法在转染效率和操作方便方面比电穿孔法优越,而电穿孔法对细胞种类的适应性方面比脂质体法广。电穿孔法能转染Cos-7、Namalwa和Vero细胞,而用脂质体法只能转染Cos-7和Vero细胞。  相似文献   

9.
为了解决基因治疗中的安全性问题 ,和寻求一种简便而又经济的糖尿病基因治疗模式 ,采用腹腔注射四氧嘧啶的方法 ,以昆明小鼠为实验对象 ,成功地建立了糖尿病小鼠模型 .通过电穿孔的基因转移 ,将含有胰岛素原cDNA的质粒pCMV IN转移到这些小鼠的股四头肌 .反转录PCR的结果表明 ,转基因在转染部位有转录活性 ,而放射免疫分析结果却表明转基因的表达产物分泌进了小鼠的血循环系统之中 .血糖浓度的变化说明 ,这些产物具有明显的降血糖效果 .在电基因转移前对转移部位用透明质酸酶处理 ,使电激时的使用电压降低 ,增加了转移效果 ,也更加安全 .  相似文献   

10.
腺病毒(Ad)用作基因治疗载体近年来受到高度重视,成为高科技前沿领域的一大研究热点和重点,是基因治疗的新进展。本文重点介绍了Ad载体介导的基因治疗原理、操作步骤及研究现状,并指出了Ad用作基因治疗载体的优势、存在的问题及解决措施。  相似文献   

11.
Gene therapy depends on safe and efficient gene delivery. The skin is an attractive target for gene delivery because of its accessibility. Recently, in vivo electroporation has been shown to enhance expression after injection of plasmid DNA. In this study, we examined the use of electroporation to deliver plasmid DNA to cells of the skin in order to demonstrate that localized delivery can result in increased serum concentrations of a specific protein. Intradermal injection of a plasmid encoding luciferase resulted in low levels of expression. However, when injection was combined with electroporation, expression was significantly increased. When performing this procedure with a plasmid encoding interleukin-12, the induced serum concentrations of gamma-interferon were as much as 10 fold higher when electroporation was used. The results presented here demonstrate that electroporation can be used to augment the efficiency of direct injection of plasmid DNA to skin.  相似文献   

12.
The pancreas is considered an important gene therapy target because the organ is the site of several high burden diseases, including diabetes mellitus, cystic fibrosis, and pancreatic cancer. We aimed to develop an efficient in vivo gene delivery system using non-viral DNA. Direct intra-parenchymal injection of a solution containing circular plasmid pmaxGFP DNA was performed on adult anesthetized ICR female mice. The injection site was sandwiched with a pair of tweezer-type electrode disks, and electroporated using a square-pulse generator. Green fluorescent protein (GFP) expression within the injected pancreatic portion was observed one day after gene delivery. GFP expression reduced to baseline within a week of transfection. Application of voltages over 40 V resulted in tissue damage during electroporation. We demonstrate that electroporation is effective for safe and efficient transfection of pancreatic cells. This novel gene delivery method to the pancreatic parenchyma may find application in gene therapy strategies for pancreatic diseases and in investigation of specific gene function in situ.  相似文献   

13.
Nanosecond Electroporation: Another Look   总被引:1,自引:0,他引:1  
As the medical field moves from treatment of diseases with drugs to treatment with genes, safe and efficient gene delivery systems are needed to make this transition. One such safe, non-viral, and efficient gene delivery system is electroporation (electrogenetherapy). Exciting discoveries using electroporation could make this technique applicable to drug and vaccine delivery in addition to gene delivery. Typically milli and microsecond pulses have been used for electroporation. Recently, the use of nanosecond electrical pulses (10-300 ns) at very high magnitudes (10-300 kV/cm) has been studied for direct DNA transfer to the nucleus in vitro. This article reviews the work done using high-intensity nanosecond pulses, termed as nanosecond electroporation (nsEP), in electroporation gene delivery systems.  相似文献   

14.
In vivo electroporation and hydrodynamics-based gene delivery were utilized to test the effect of leptin gene transfer on food intake, and body and fat weights of mice. Gene transfer of pVRmob by electroporation caused a significant reduction in body weight compared with the control counterpart (p<0.05), although a lesser effect was found in food intake, and the weights of interscapular brown and epididymal fat by electroporation. As might be expected, the hydrodynamics-based transfection method significantly reduced body weight over 1 week post-transfection (p<0.05). Furthermore, epididymal fat was decreased by 50% at 1 week after gene transfer (p<0.001). These results suggest that both electroporation and hydrodynamics-based gene delivery may be effective approaches for systemic delivery of recombinant leptin to the central nervous system, and that the efficiency of gene transfer in hydrodynamics-based gene delivery was markedly higher than that in electroporation at least within the first week after transfection.  相似文献   

15.
Previously, we have established an in vivo electroporation method for gene transfer into muscle by injection of DNA with a needle followed by electric pulse delivery using needle-type electrodes and proved that this method is effective for the systemic delivery of cytokines. To perform the needleless gene delivery, we combined jet injection of DNA with electroporation using plate-type electrodes. For delivery of beta-galactosidase- and enhanced green fluorescent protein (EGFP)-expressing plasmids into muscles, there was no significant difference between the previous needle-mediated method and the newly developed jet-injection method. When pCAGGS-IL-5 was introduced into tibialis anterior, quadricipital and back sural muscles by this new method, the serum IL-5 levels reached 3.4 +/- 0.9, 5.7 +/- 1.7 and 8.4 +/- 2.7 ng/ml at day 5, respectively. Although the peak values of IL-5 achieved by the jet-injection method in these muscles were lower than that of the highest value achieved by needle-mediated gene delivery into anterior tibial muscle, this new method could deliver plasmid into relatively large muscles with better efficiency than the needle-mediated method. Thus the jet-injection method provides a useful means of gene delivery into large muscles, which is essential for future use in human gene therapy.  相似文献   

16.
The use of electroporation to facilitate gene transfer is an extremely powerful and useful method for both in vitro and in vivo applications. One of its great strengths is that it induces functional destabilization and permeabilization of cell membranes throughout a tissue leading to widespread gene transfer to multiple cells and cell types within the electric field. While this is a strength, it can also be a limitation in terms of cell-specific gene delivery. The ability to restrict gene delivery and expression to particular cell types is of paramount importance for many types of gene therapy, since ectopic expression of a transgene could lead to deleterious host inflammatory responses or dysregulation of normal cellular functions. At present, there are relatively few ways to obtain cell-specific targeting of nonviral vectors, molecular probes, small molecules, and imaging agents. We have developed a novel means of restricting gene delivery to desired cell types based on the ability to control the transport of plasmids into the nuclei of desired cell types. In this article, we discuss the mechanisms of this approach and several applications in living animals to demonstrate the benefits of the combination of electroporation and selective nuclear import of plasmids for cell-specific gene delivery.  相似文献   

17.
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase) and TNT (Troponin T) were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.  相似文献   

18.
Many patients with various types of cancers have already by the time of presentation, micrometastases in their tissues and are left after treatment in a minimal residual disease state [Am J Gastroenterol 95(12), 2000]. To prevent tumour recurrence these patients require a systemic based therapy, but current modalities are limited by toxicity or lack of efficacy. We have previously reported that immune reactivity to the primary tumour is an important regulator of micrometastases and determinant of prognosis. This suggests that recruitment of specific anti-tumour mechanisms within the primary tumour could be used advantageously for tumour control as either primary or neo-adjuvant treatments. Recently, we have focused on methods of stimulating immune eradication of solid tumours and minimal residual disease using gene therapy approaches. Gene therapy is now a realistic prospect and a number of delivery approaches have been explored, including the use of viral and non-viral vectors. Non-viral vectors have received significant attention since, in spite of their relative delivery inefficiency, they may be safer and have greater potential for delivery of larger genetic units. By in vivo electroporation of the primary tumour with plasmid expressing GM-CSF and B7-1, we aim to stimulate immune eradication of the treated tumour and associated metastases. In this symposium report, we describe an effective gene based approach for cancer immunotherapy by inducing cytokine and immune co-stimulatory molecule expression by the growing cells of the primary tumour using a plasmid electroporation gene delivery strategy. We discuss the potential for enhancement of this therapy by its application as a neoadjuvant to surgical excision and by its use in combination with suppressor T cell depletion.This article is a symposium paper from the Annual Meeting of the “International Society for Cell and Gene Therapy of Cancer”, held in Shenzhen, China, on 9–11 December 2005.  相似文献   

19.
This present study aims at establishing a novel in vivo gene delivery system for intra-articular tissues. Plasmid DNA (pDNA) carrying the firefly luciferase or enhanced green fluorescent protein (EGFP) genes as markers was injected into a joint space and electric stimuli were given percutaneously with a pair of electrodes. Injection with naked pDNA alone did not induce any detectable level of luciferase activity, whereas electroporation at 25-500 V/0.7 cm resulted in a significant expression of the marker gene in the synovium. The expression level depended on the voltage, the optimum transfection being achieved at 150 V/0.7 cm. When the Epstein-Barr virus (EBV)-based plasmid vectors harboring the EBV nuclear antigen 1 (EBNA1) gene and oriP sequence were substituted for conventional pDNA, the transfection efficiency was increased approximately 5-10 times. Histological examination of the EGFP gene-transfected joints revealed that the marker gene was expressed in the synovial membrane while other intra-articular tissues such as articular cartilage were negative for the transgene product. Transgene-specific mRNA was demonstrated in synovium but not in other organs as estimated by RT-PCR analysis. The present results strongly suggest that in vivo electroporation is a quite simple, safe, and effective gene delivery method that could be applicable to gene therapy against articular diseases.  相似文献   

20.
BACKGROUND: Our current understanding of how the unique tumour microenvironment influences the efficacy of gene delivery is limited. The current investigation systematically examines the efficiency of several non-viral gene transfer agents to transfect multicellular tumour spheroids (MCTS), an in vitro model that displays a faithful three-dimensional (3D) representation of solid tumour tissue. METHODS: Using a luciferase reporter assay, gene transfer to MCTS was optimised for 22 kDa linear and 25 kDa branched polyethyleneimine (PEI), the cationic lipids Lipofectamine(trade mark) and DCChol : DOPE, and the physical approach of tissue electroporation. Confocal microscopy was used to take optical tissue slices to identify the tissue localisation of green fluorescent protein (GFP) reporter gene expression and the distribution of fluorescently labelled complexes. A MCTS model of quiescent tumour regions was used to establish the influence of cellular proliferation status on gene transfer efficiency. RESULTS: Of the polyplexes tested, 22 kDa linear PEI provided optimal gene delivery, with gene expression peaking at 46 h. Despite being the optimal vector tested, PEI-mediated transfection was limited to cells at the MCTS periphery. Using fluorescent PEI, it was found that complexes could only penetrate the outer 3-5 proliferating cell layers of the MCTS, sparing the deeper quiescent cells. Gene delivery in an MCTS model comprised entirely of quiescent cells demonstrated that in addition to being inaccessible to the vector, quiescent tumour regions are inherently less susceptible to PEI-mediated transfection than proliferating regions. This 'resistance' to transfection observed in quiescent cells was overcome through the use of electroporation. Despite the improved efficacy of electroporation in quiescent tissue, the gene expression was still confined to the outer regions of MCTS. The results suggest that limited access to central regions of an MCTS remain a significant barrier to gene delivery. CONCLUSIONS: This data provides new insights into tumour-specific factors affecting non-viral gene transfer and highlights the difficulties in delivering genes to avascular tumour regions. The MCTS model is a useful system for the initial screening of future gene therapy strategies for solid tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号