首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fc受体(FcR)是一种表达在免疫细胞表面的受体分子, 由多亚基构成, 通过与免疫球蛋白(Ig)的Fc段结合引起包括炎症因子释放和吞噬作用等体液和细胞免疫反应。研究采用RACE技术首次克隆得到了虹鳟FcγR的α亚基基因(FcγRα)和γ亚基基因(FcRγ)的cDNA序列, 采用生物信息学软件对FcγRα和FcRγ的序列进行了特征分析, 实时荧光定量PCR检测了其在不同组织和细胞亚群中以及在Poly (I鲶C)和LPS刺激后头肾中的表达。结果显示:FcγRα的cDNA全长1677 bp, 开放阅读框为954 bp, 编码317个氨基酸; FcγRα由信号肽和2个Ig样结构域构成, 但没有跨膜区和胞内区。FcRγ亚基存在2种形式, 分别命名为FcRγ1和FcRγ2(包含FcRγ2a和FcRγ2b两个剪接异构体), 它们均由信号肽、跨膜区和胞内的免疫受体酪氨酸活化基序(ITAM)构成。氨基酸序列相似性分析表明虹鳟FcγRα与斑点叉尾鮰FcRI相同率最高(30%), 虹鳟FcRγ1和FcRγ2a/2b与哺乳动物FcRγ相同率最高可达40%。组织表达显示FcγRα、FcRγ1和FcRγ2a/2b在头肾、脾脏和血液中表达较高; 细胞亚群表达显示FcγRα、FcRγ1和FcRγ2a/2b在髓样细胞群中表达最高; LPS和Poly (I鲶C)刺激后,FcγRα、FcRγ1和FcRγ2a/2b在头肾中的表达显著上调, 这表明FcγR在机体抗细菌和抗病毒免疫中可能发挥重要作用。  相似文献   

2.
新生儿Fc受体研究进展   总被引:1,自引:0,他引:1  
新生儿Fc受体(FcRn)是由α链和β链两个亚基以非共价键的形式组成的异源二聚体,在免疫球蛋白IgG转运和代谢中发挥着重要作用.对FcRn的分子结构、转运机制及其功能进行了综述.  相似文献   

3.
Fcγ受体(FcγRs)与免疫球蛋白Ig G Fc的特异作用介导了广谱的免疫学功能,并对天然免疫和适应性免疫产生影响。近些年的研究表明,免疫反应中Fc与FcγRs的相互作用是动态调节过程,由Ig G的亚型、Ig G Fc的糖链结构以及免疫细胞FcγRs的选择性表达决定。Ig G和免疫细胞共同决定了Fc和FcγRs结合的细胞特异性。现全面阐述FcγRs家族分子的生物学功能以及Fc与FcγRs的相互作用对疫苗设计策略所产生的深远影响。  相似文献   

4.
鲤鱼皮肤粘液与血清中免疫球蛋白的比较研究   总被引:12,自引:0,他引:12  
鱼类是比较低等的脊椎动物,它的免疫机理远不如哺乳类和鸟类完善,其血清中存在的免疫球蛋白主要是IgM。除此之外,在某些鱼类的皮肤粘液中也发现有大量的免疫球蛋白,它们在鱼类的免疫中起着相当重要的作用。人们已经从羊头鲷(Archosargusprobato...  相似文献   

5.
丙种免疫球蛋白是血清中重要的糖蛋白,在IgG Fc的297位天冬酰胺位点存在重要的糖基化,连接的糖链能维持IgG重链构像并调节Fc和FcγR结合能力,异常的糖链改变某些蛋白质的抗原特性,激活补体,介导炎症引起免疫失衡.多种疾病都可能伴有异常糖苷化或因缺少糖苷化酶引起.糖苷的功能结构研究已取得一定进展,进一步研究IgG的Fc段不同糖基化对IgG晶体结构及其生物学功能的影响将有助于设计新型生物制品.本文就近年来丙种免疫球蛋白Fc段糖基化及生物学活性与功能、糖蛋白寡糖链等研究进展作一综述.  相似文献   

6.
目的:用免疫共沉淀的方法检测β-TC3(小鼠胰岛β细胞瘤细胞)细胞膜中与胰岛素受体结合的G蛋白.方法:提取β-TC3细胞膜蛋白,通过免疫共沉淀及蛋白质印迹的方法,检测G蛋白α及β亚基的表达.结果:抗胰岛素受体抗体沉淀胰岛素受体结合的G蛋白复合物后,分别用抗胰岛素受体抗体、抗G蛋白α亚基抗体及抗G蛋白β亚基抗体,检测到胰岛素受体、G蛋白α亚基及G蛋白β亚基的表达.结论:在β-TC3细胞膜中,胰岛素受体与G蛋白共存,G蛋白α亚基及β亚基与胰岛素受体可能存在直接的相互作用.  相似文献   

7.
抗体依赖性细胞介导的细胞毒性作用(antibody-dependent cell-mediated cytotoxicity,ADCC)是一种固有免疫和适应性免疫相结合的免疫学效应。ADCC效应主要是通过效应细胞膜表面的受体IgG Fc受体(Fc receptor,FcR)如FcγRIIIa(CD16)、FcγRIIc(CD32)、FcγRI(CD64)识别靶细胞膜表面抗原,结合相应IgG抗体的Fc段而促发效应细胞脱颗粒和细胞因子分泌的一类细胞毒效应。对人类免疫缺陷病毒(human immunodeficiency virus,HIV)感染已有研究证实了,ADCC效应在控制HIV感染中发挥着重要作用。现对ADCC效应在抗HIV感染中的作用作一综述。  相似文献   

8.
牙周炎是一种由菌斑引起的以牙周软组织和牙槽骨破坏为特征的慢性感染性疾病,其病因尚不明确,目前普遍认为是细菌感染和宿主防御相互作用的结果,受遗传有关的宿主易感性、环境、行为因素的影响。致病菌的存在是牙周炎发生的必要条件,基因因素影响宿主在应对细菌免疫应答过程中的强度,从而导致不同程度的牙周组织破坏。许多有关牙周炎基因方面的研究把目光对准了在免疫调节和新陈代谢中发挥重要作用的物质的基因多态性,比如细胞因子、细胞表面受体、趋化因子、酶以及其他与抗原识别有关的物质。FcγR就是其中之一。FcγR属于免疫球蛋白超家族,主要有FcγRI、FcγRII、FcγRIII三类,大量研究表明FcγRIIA基因多态性与牙周炎的易感性有关。在针对不同种族的调查中,FcγRIIA基因多态性与牙周炎的易感性的研究结果不尽相同。也提示我们基因多态性的等位基因频率在各个种族之间存在差异,这种基因标识在界定牙周炎病因和预后方面的相关应用会变得有所不同。基因诊断将会成为未来牙周病预防和治疗的新方向。本文主要对近年来FcγRIIA基因多态性与牙周炎关系的研究进展进行了综述。  相似文献   

9.
为评估鱼类混养及其排泄物对水体环境的潜在影响,采用室内受控实验研究了鲢(Hypophthalmichthys molitrix)和黄尾鲴(Xenocypris davidi)混养对水体鱼腥藻和水质的影响。实验设置鲢投放组、鲢鲴组合投放组和空白对照组,实验周期14 d。结果发现,鱼类的放养增加了实验水体的营养负荷,有鱼实验组水体中总氮、总磷、氨氮和高锰酸盐指数均高于对照组,且实验后期鲢组的营养盐浓度均高于鲢鲴组;有鱼实验组水体中叶绿素a浓度和藻密度均降低,且鲢鲴组较鲢组降低更为明显;黄尾鲴的加入可以减少水体中鱼类排泄物的积累,鲢鲴组鱼类生物量较鲢组多,但排泄物重量却低于鲢组;鲢鲴组对鱼腥藻的消化率更高,实验结束时达到79.33%,极显著高于鲢组(P<0.01)。即在鲢控藻的基础上,混养黄尾鲴可以减少鲢摄食鱼腥藻后的排泄物重量,减少因鱼类排泄物造成的二次污染。  相似文献   

10.
硬骨鱼新型免疫球蛋白的研究进展   总被引:2,自引:0,他引:2  
鱼类是最早出现免疫球蛋白的动物,鱼类免疫球蛋白在鱼类的特异性体液免疫应答中发挥重要的作用。一直以来,人们认为在硬骨鱼中仅存在IgM和IgD两种免疫球蛋白,而2005年以来,陆续在斑马鱼、虹鳟鱼及鲤鱼等硬骨鱼中发现了新型免疫球蛋白,分别命名为IgZ、IgT及IgM-IgZ等。这些新型免疫球蛋白不仅在基因结构上很特别,而且呈现出多样性,在不同种的硬骨鱼中的功能也不完全相同,同一种鱼中的IgT也呈现多样性。虽然目前对于鱼类新型免疫球蛋白的研究刚刚起步,对其功能了解较少,但有研究表明IgT在硬骨鱼的粘膜免疫中发挥重要的作用,且认为它与IgA是同源的。该文拟对硬骨鱼中发现的新型免疫球蛋白的结构特点、基因组成和分布模式及功能差异作一简要综述。  相似文献   

11.
Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies.  相似文献   

12.
Fc receptors (FcRs) are crucial in the immune system; they mediate a plethora of biological functions as diverse as antigen presentation, phagocytosis, cytotoxicity, induction of inflammatory cascades and modulation of immune responses. Parasites, in order to survive in the immunocompetent host, have devised ingenious methods to subvert this important aspect of the immune response. This article discusses the current thinking on FcRs, their role in immunity to parasites, and immune evasion strategies employed by parasites in their attempt to neutralize the important immune defense mechanisms mediated by these molecules.  相似文献   

13.
Receptors interacting with the constant domain of immunoglobulins (Igs) have a number of important functions in vertebrates. They facilitate phagocytosis by opsonization, are key components in antibody-dependent cellular cytotoxicity as well as activating cells to release granules. In mammals, four major types of classical Fc receptors (FcRs) for IgG have been identified, one high-affinity receptor for IgE, one for both IgM and IgA, one for IgM and one for IgA. All of these receptors are related in structure and all of them, except the IgA receptor, are found in primates on chromosome 1, indicating that they originate from a common ancestor by successive gene duplications. The number of Ig isotypes has increased gradually during vertebrate evolution and this increase has likely been accompanied by a similar increase in isotype-specific receptors. To test this hypothesis we have performed a detailed bioinformatics analysis of a panel of vertebrate genomes. The first components to appear are the poly-Ig receptors (PIGRs), receptors similar to the classic FcRs in mammals, so called FcRL receptors, and the FcR γ chain. These molecules are not found in cartilagous fish and may first appear within bony fishes, indicating a major step in Fc receptor evolution at the appearance of bony fish. In contrast, the receptor for IgA is only found in placental mammals, indicating a relatively late appearance. The IgM and IgA/M receptors are first observed in the monotremes, exemplified by the platypus, indicating an appearance during early mammalian evolution. Clearly identifiable classical receptors for IgG and IgE are found only in marsupials and placental mammals, but closely related receptors are found in the platypus, indicating a second major step in Fc receptor evolution during early mammalian evolution, involving the appearance of classical IgG and IgE receptors from FcRL molecules and IgM and IgA/M receptors from PIGR.  相似文献   

14.
One of the goals of cell-based immune therapy in cancer is the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses. To achieve this objective, the ability of dendritic cells (DC) to cross-present tumor antigens can be exploited. One of the most efficient pathways for the induction of CTLs by cross-presentation is mediated by immunoglobulins of the IgG class, which are used by DCs to sample antigen in the form of immune complexes via Fc-gamma receptors. Could DCs use an IgE-mediated cross-presentation mechanism in a comparable manner to induce CTLs? We here discuss the potential of two human IgE Fc receptors, FcεRI and FcεRII, to serve as antigen uptake receptors for IgE-mediated cross-presentation. We conclude that the existence of an IgE-mediated cross-presentation pathway would provide a direct link between IgE-driven immune responses and CTL activity.  相似文献   

15.
In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.  相似文献   

16.
J Gergely  G Sarmay 《FASEB journal》1990,4(15):3275-3283
Fc receptors (FcR) are immunoglobulin-binding molecules that enable antibodies to perform several biological functions by forming a link between specific antigen recognition and effector cells. FcRs are involved in regulating antibody production as well. Most FcRs belong to the immunoglobulin superfamily, and show structural homology with each other and with their ligands. Recent data on the structure of IgG binding FcRs obtained from monoclonal antibodies and gene cloning studies, as well as on ligand binding capacity and fine specificity of the receptor binding site (or sites), are reviewed. The binding capacity and fine specificity of receptor binding sites, as well as the structure and conformation of the immunoglobulin ligands, play important roles in triggering FcR-mediated signals. In induction of signals, the interaction of the FcR with the CH2 domain of the IgGFc is decisive. The high-affinity Fc gamma RI possess one active binding site specific for contact residues that is located at the N-proximal end of the CH2 domain and is able to mediate both binding and signal transfer. The low-affinity Fc gamma RIII has two active binding sites: the CH3 domain-specific site, which mediates only binding; and the CH2 domain-specific site, which is responsible for binding and signaling. Similarly, the low-affinity Fc gamma RII on resting B cells has one site for CH2 and another for CH3 binding. The expression, release, and fine specificity of Fc gamma RII on B cells correlates with the cell cycle.  相似文献   

17.
Three novel and closely related leukocyte immune-type receptors (IpLITR) have been identified in channel catfish (Ictalurus punctatus). These receptors belong to a large polymorphic and polygenic subset of the Ig superfamily with members located on at least three independently segregating loci. Like mammalian and avian innate immune regulatory receptors, IpLITRs have both putative inhibitory and stimulatory forms, with multiple types coexpressed in various lymphoid tissues and clonal leukocyte cell lines. IpLITRs have an unusual and novel relationship to mammalian and avian innate immune receptors: the membrane distal Ig domains of an individual IpLITR are related to fragment crystallizable receptors (FcRs) and FcR-like proteins, whereas the membrane proximal Ig domains are related to several leukocyte receptor complex encoded receptors. This unique composition of Ig domains within individual receptors supports the hypothesis that functionally and genomically distinct immune receptor families found in tetrapods may have evolved from such ancestral genes by duplication and recombination events. Furthermore, the discovery of a large heterogeneous family of immunoregulatory receptors in teleosts, reminiscent of amphibian, avian, and mammalian Ig-like receptors, suggests that complex innate immune receptor networks have been conserved during vertebrate evolution.Electronic supplementary material Supplementary material is available for this article at and is accessible for authorized users. GenBank Submissions: The sequences presented in this article have been submitted to GenBank under the following accession numbers: AAW82352, IpLITR1; AAW82353, IpLITR2; AAW82354, IpLITR3.  相似文献   

18.
Fc receptors (FcRs) are immunoglobulin-binding structures that enable antibodies to perform a variety of functions by forming connections between specific recognition and effector cells. Besides eliciting cytotoxicity, inducing secretion of mediators and endocytosis of opsonized particles, FcRs are involved in the regulation of antibody production, both as integral membrane proteins and as soluble molecules released from the cell surface. Most FcRs belong to the same family of proteins as their ligands (immunoglobulin superfamily). This review contains recent data obtained by use of monoclonal antibodies and cloning studies on FcRs and FcR-like molecules. The importance of fine specificity of receptor binding site(s)--that of the conformation of FcRs and their ligands in triggering signaling mechanisms--is analyzed. The regulatory function of membrane-bound and -released FcRs; the correlation between cell cycle, FcR expression, and release; as well as the possible mechanisms of these phenomena are discussed.  相似文献   

19.
The mouse Fc gamma RI is one of the most fundamentally important FcRs. It participates in different stages of immunity, being a low affinity receptor for T-independent IgG3 and yet a high affinity receptor for IgG2a, the product of a Th1 immune response. However, analysis of this receptor has been difficult due largely to the failure to generate specific Abs to this FcR. We have made use of the polymorphic differences between BALB/c and NOD/Lt mice to generate mAb specific for the Fc gamma RI of BALB/c and the majority of in-bred mouse strains. Three different mAb were obtained that detected Fc gamma RI encoded by the more common Fcgr1(a) and Fcgr1(b) alleles, and although they identified different epitopes, none inhibited the binding of IgG to Fc gamma RI. When bound to Fc gamma RI, these mAb induced calcium mobilization upon cross-linking. Several novel observations were made of the cellular distribution of Fc gamma RI. Resting and IFN-gamma-induced macrophages expressed Fc gamma RI as well as mast cell lines. Both bone marrow-derived and freshly isolated dendritic cells from spleen and lymph nodes expressed Fc gamma RI. A class of DC, uniquely found in s.c. lymph nodes, expressed the highest level of Fc gamma RI and also high levels of MHC class II, DEC205, CD40, and CD86, with a low level of CD8 alpha, corresponding to the phenotype for Langerhans-derived DC, which are highly active in Ag processing. Thus, in addition to any role in effector functions, Fc gamma RI on APC may act as a link between innate and adaptive immunities by binding and mediating the uptake of T-independent immune complexes for presentation, thereby assisting in the development of T-dependent immune responses.  相似文献   

20.
Abstract

Fc receptors (FcRs) are immunoglobulin-binding structures that enable antibodies to perform a variety of functions by forming connections between specific recognition and effector cells. Besides eliciting cytotoxicity, inducing secretion of mediators and endocytosis of opsonized particles, FcRs are involved in the regulation of antibody production, both as integral membrane proteins and as soluble molecules released from the cell surface. Most FcRs belong to the same family of proteins as their ligands (immunoglobulin superfamily). This review contains recent data obtained by use of monoclonal antibodies and cloning studies on FcRs and FcR-like molecules. The importance of fine specificity of receptor binding site(s) — that of the conformation of FcRs and their ligands in triggering signaling mechanisms — is analyzed. The regulatory function of membrane-bound and -released FcRs; the correlation between cell cycle, FcR expression, and release; as well as the possible mechanisms of these phenomena are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号