首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
阿片样物质与心脏缺血预处理   总被引:7,自引:1,他引:7  
Pei JM  Bi H  Zhu MZ 《生理科学进展》2003,34(1):63-66
阿片肽和外源性阿片术物质如吗啡除了能缓解心肌梗塞造成的疼痛外,还具有减小梗塞范围和降低心律失常的发生等重要作用。心脏阿片受体参与了缺血预处理(IPC)对心脏的调节作用,阿片样物质激活心脏阿片受体还可模拟IPC对心脏的作用。心脏阿片受体的激活产生的急性即第一窗口期和延迟即第二窗口期的心脏保护作用的信号途径,与IPC相似,其信号通路涉及Gi/Go蛋白、蛋白激酶C、酪氨酸激酶和ATP敏感K^ 通道等途径。  相似文献   

2.
内源性阿片物质参与大鼠缺血预处理的心肌保护作用   总被引:11,自引:2,他引:11  
Fu LL  Xia Q  Shen YL  Wong TM 《生理学报》1998,50(6):603-610
实验以离体灌流的SD大鼠心脏为模型,用k特异性拮抗剂的MR2266研究k阿片受体的阻断与缺血预处理的关系,用放射免疫分析法研究IP及长时间缺血对心肌强啡肽A1-13浓度的影响,探索K阿片物质在IP过程中的作用和地位。  相似文献   

3.
δ阿片类物质的抗缺血心脏保护机制和临床应用前景   总被引:1,自引:0,他引:1  
阿片类物质尤其是δ阿片受体激动剂,在整体动物、离体器官、培养的细胞模型,以及人的心脏组织中能够模拟缺血预适应,对抗心肌缺血-再灌注损伤。本文介绍了近年来δ阿片类物质在心肌缺血-再灌注中的作用,其心脏保护作用涉及的信号调控机制的研究进展,以及阿片类药物治疗缺血性心脏疾病的临床应用前景。  相似文献   

4.
本文综述了心脏β-肾上腺素受体信号转导系统的生理功能及其各组成部分在心肌内缺血预处理中的作用,为心肌缺血预处理的保护机制提供科学依据。  相似文献   

5.
电脱耦联延迟参与κ-阿片受体兴奋引起的心肌保护作用   总被引:1,自引:0,他引:1  
目的:研究κ-阿片受体兴奋诱导的心肌保护作用是否与其对心肌缺血期间电耦联的影响有关,并探讨这种作用的可能机理。方法:采用雄性SD大鼠心脏Langendorff离体灌流模型。①全心停灌30min,复灌2h,观察不同浓度κ-阿片受体特异激动剂U50,488H(10-7、10-6、3×10-6、和10-5mol/L)及其特异阻断剂nor-BNI(5×10-6mol/L)和线粒体ATP敏感性钾离子通道特异阻断剂5-HD(10-4mol/L)对缺血/复灌心肌的作用。测量指标:以分光光度计在490nm波长下测定氯化三苯基四氯唑(TTC)与活细胞反应的产物formazan含量的方法测定心肌细胞活性、测定冠脉流出液中乳酸脱氢酶(LDH)的含量以及心室内压;②全心停灌70min,应用四电极法观察不同浓度U50,488H、nor-BNI和5-HD对缺血期间心肌整体阻抗和电脱耦联参数(电脱耦联时间、平台时间、电脱耦联最大速率和阻抗倍数)的影响。结果:①U50,488H可诱导心肌保护作用,并呈浓度依从性,与对照组比较,表现为for-mazan含量增加,LDH释放减少,心室功能恢复增强;②经较高浓度U50,488H(10-6、3×10-6、和10-5mol/L)预处理后,电脱耦联时间和平台时间均延迟,电脱耦联最大速率降低;③U50,488H在10-7-10-5mol/L范围内对电脱耦联时间的延迟与其对formazan含量增加和LDH释放减少的作用呈线形相关;④U50,488H对formazan含量增加、LDH释放减少和电脱耦联时间和平台时间延迟的作用均可被nor-BNI或5-HD所阻断。结论:κ-阿片受体兴奋对电脱耦联的延迟作用与其诱导的心肌保护作用有关,这种作用受到线粒体ATP敏感性钾离子通道的调节。  相似文献   

6.
缺血预处理通过β2-肾上腺素受体保护心肌细胞收缩功能   总被引:1,自引:0,他引:1  
本文旨在探讨缺血预处理(ischemic preconditioning, IP)对缺血/再灌注(ischemia/reperfusion, I/R)损伤心脏的保护机制,从细胞和受体水平研究β2-肾上腺素受体(β2-adrenoreceptor, β2-AR)是否参与了IP对I/R损伤心脏的保护作用.Sprague-Dawley大鼠随机分为单纯I/R组(对照组)、IP组、短暂异丙肾上腺素(isoproterenol, ISO)处理组、IP ICI118551组、ISO ICI118551组和ICI118551组.除对照组外,其它各组大鼠处理后均行缺血30min/复灌30min.记录心脏收缩期左心室内压上升的最大变化速率( dp/dtmax)、舒张期左心室内压下降的最大变化速率(-dp/dtmax)及左心室内压差(difference of left ventricular pressure, ΔLVP,左心室收缩压-左心室舒张压).测定冠状动脉流出液乳酸脱氢酶(1actate dehydrogenase, LDH)含量.进一步酶解分离心脏,获得单个心室肌细胞,测定其存活率和收缩功能.结果显示,IP和ISO组±dp/dtmax、ΔLVP较对照组增高;心肌细胞存活率和收缩幅度也显著升高;收缩时间(time-to-peak contraction, TTP)缩短;冠状动脉流出液LDH含量减少.选择性β2-AR拮抗剂ICl118551阻断IP和ISO的作用.各组间心肌细胞舒张50%时间(time-to-50% relaxation, R50)和舒张100%时间(time-to-100% relaxation, R100)均无明显差异.结果提示,β2-AR可能在IP对I/R损伤心脏的保护作用中发挥重要作用.  相似文献   

7.
目的:探讨外源性κ-阿片受体激动剂U50,488H对小鼠缺血再灌注损伤心肌的保护作用及其机制。方法:选择成年雄性C57小鼠40只,将其随机分为4组:假手术组(Sham),缺血再灌注组(I/R),κ-阿片受体激动剂U50,488H+I/R组(U+I/R),κ-阿片受体阻断剂nor-BNI+U50,488H+I/R组(N+U+I/R)。建立小鼠急性心肌缺血再灌注在体模型,通过小动物超声仪检测小鼠心功能,采用氯化三苯基四氮唑-伊文思蓝双染检测心肌梗死面积,检测血清心肌损伤物LDH活性和cTnI含量,Western-Blot检测Ca MKII和磷酸化Ca MKII的表达。结果:与Sham组相比,I/R组小鼠心功能下降,心肌梗死面积增加,血清LDH和cTnI水平升高(P0.05),心肌组织内磷酸化Ca MKII的表达明显增加(P0.05);与I/R组相比,U+I/R组心功能改善,心肌梗死面积减小,血清LDH和cTnI水平降低(P0.05),心肌组织内CaMKII磷酸化被抑制(P0.05)。给予nor-BNI后,上述U50,488H的作用均被阻断。结论:κ-阿片受体激活可抑制CaMKII磷酸化并抑制心肌缺血再灌注损伤,改善心功能。  相似文献   

8.
阿片受体激动剂对猪冠状动脉肌条作用的研究   总被引:9,自引:0,他引:9  
石刚刚  魏东升 《生理学报》1994,46(2):176-180
采用螺旋肌条生物检定技术研究阿片受体激动剂对猪冠状动脉肌条的影响。结果显示κ,μ,δ亚型选择性激动剂U-50488H,羟甲基芬太尼,吗啡,D-ala-DLeu-enkephalin(DADLE)以及广谱激动剂依托啡都可以引起肌条的收缩,收缩强度以U-50488H>吗啡>依托啡>OMF,DADLE。上述作用均呈量效关系,纳洛酮对上述各亚型激动剂的作用不仅不能拮抗,反有增强作用,纳洛酮本射亦有致收缩作  相似文献   

9.
目的:探讨δ-阿片受体是否参与缺血后处理对抗心肌缺血/复灌(I/R)损伤和心肌细胞低氧/复氧(H/R)损伤作用及其机制。方法:采用离体大鼠心脏Langendorff灌流模型,全心停灌30 min、复灌120 min复制I/R模型。测定心室力学指标和复灌时冠脉流出液中乳酸脱氢酶(lactate dehydrogenase,LDH)活性,实验结束测定心肌组织formazan含量。酶解分离的心肌细胞采用低氧60min、复氧60min复制H/R模型,测定心肌细胞存活率。结果:在离体心脏模型上,与I/R组相比,缺血后处理组(停灌后复灌即刻立即给予6次全心停灌/复灌循环)心肌组织的formazan含量明显增高,复灌期间冠脉流出液中LDH明显降低,同时缺血后处理明显改善心室力学指标,缓解冠脉流量的减少 在分离心肌细胞模型上,低氧后处理明显提高心肌细胞存活率。δ-阿片受体阻断剂naltrindole(NTI)和线粒体钙激活钾通道(KCa)阻断剂paxilline(Pax)在离体大鼠心脏模型和分离心肌细胞模型上均能明显减弱缺血后处理的作用。在心肌细胞模型上,与H/R组相比,δ-阿片受体激动剂DADLE明显提高心肌细胞存活率,其作用可被paxilline所阻断。结论:缺血后处理具有抗心肌缺血/复灌损伤的作用,这种保护作用可能与其激活δ-阿片受体和开放KCa有关。  相似文献   

10.
β3 肾上腺素受体在心脏活动调节中的作用   总被引:2,自引:0,他引:2  
1996年首次发现在人类心室肌组织中存在β3肾上腺素受体(β3-adrenoceptor,β3AR),可以介导负性变力作用。该受体的结构与功能特性明显不同于β1AR和β2AR,这可能有助于深入了解病理情况下,心脏对儿茶酚胺的异常反应规律。心房中也存在β3AR,其作用尚无定论。心室β3AR主要通过抑制型G蛋白(Gi)-内皮型一氧化氮合酶(eNOS)-一氧化氮(NO)-环-磷酸鸟苷(cGMP)-Ca^2+通路介导负性变力作用。心衰时,β3AR表达上调,与其偶联的Gi也上调,由于该受体不易脱敏并易被高浓度儿茶酚胺激活,因此该受体介导的负性变力作用可能参与心衰的病理生理机制。  相似文献   

11.
迷走神经和乙酰胆碱对缺血心肌保护作用的研究新进展   总被引:1,自引:0,他引:1  
Zang WJ  Lu J  Li DL  Jia B  Xu XL  Sun L 《生理科学进展》2006,37(4):292-296
缺血性心脏病是危害人类健康的主要疾病之一。新近研究发现,心肌缺血与迷走神经活性降低及交感神经活性升高密切相关。本文从缺血性心脏病时心脏迷走神经调控的改变、迷走神经及其递质乙酰胆碱对缺血心肌的保护作用和其在缺血预适应、缺血后适应中可能的信号转导途径等方面,对迷走神经及其递质保护缺血心肌的作用机制研究的新进展予以综述,将有助于深入理解缺血性心脏病的发病机制及防治措施,为该疾病的防治开辟新思路。  相似文献   

12.
目的:研究心肌缺血预适应(IPC)大鼠循环血中微囊泡(MVs)对大鼠在体心肌缺血/再灌注(I/R)损伤的作用及相关机制。方法:反复短暂结扎/松开大鼠冠状动脉左前降支建立大鼠IPC模型,自腹主动脉取血,超速离心法分离循环血中的IPC-MVs,并对其进行流式鉴定。建立在体大鼠心肌I/R模型,股静脉注射IPC-MVs 7 mg/kg。HE染色观察心肌形态学变化,TTC染色检测心肌梗死范围,TUNEL染色检测心肌细胞凋亡率。比色法测定血清乳酸脱氢酶(LDH)活力,分光光度法测定心肌组织caspase 3活力,Western blot法检测心肌组织Bcl-2、Bax蛋白表达水平。结果:流式细胞术检测IPC-MVs浓度为4380±745个/μl。与I/R组比较,IPC-MVs能够减轻I/R大鼠心肌组织损伤,缩小心肌梗死范围(P<0.01),减少心肌细胞凋亡数量(P<0.01),明显降低血清LDH活力(P<0.01),降低心肌组织caspase 3活力(P<0.01),升高Bcl-2蛋白表达(P<0.01),降低Bax蛋白表达(P<0.01),升高Bcl-2/Bax比值(P<0.01)。结论:IPC-MVs显著减轻大鼠在体心肌I/R损伤,通过上调心肌组织中Bcl-2的蛋白表达,下调Bax的蛋白表达,升高Bcl-2/Bax比值,降低caspase 3活力而发挥心肌保护作用。  相似文献   

13.
The objectives of this article are to: (i) discuss the origins and the nature of ischemic injury, (ii) identify factors influencing the evolution of injury, (iii) consider various cellular targets for ischemic injury, (iv) assess the overall importance of reperfusion injury, (v) discuss conceptual approaches to cardioprotection and (vi) to identify new ideas and approaches in the realm of myocardial protection. In the human heart, myocardial ischemia may take many forms, it may exist for periods as short as a few seconds or minutes, it may last for hours or it may persist for years. In terms of discussing interventions to combat myocardial ischemia, this article will focus on: (i) regional ischemia as occurs during evolving myocardial infarction and (ii) whole heart or global ischemia as occurs during cardiac surgery and transplantation.  相似文献   

14.
  总被引:12,自引:0,他引:12  
Apoptosis or programmed cell death is a genetically controlled response for cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca2+ which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine whether ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15, 30 or 60 min of ischemia as well as 15 min of ischemia followed by 30, 60, 90 or 120 min of reperfusion. At the end of each experiment, the heart was processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG® in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from the hearts to 1.8% agarose gel electrophoresis and photographed under UV illumination. The results of our study revealed apoptotic cells only in the 90 and 120 min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation which showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). The presence of apoptotic cells and DNA fragmentation in the myocardium were completely abolished by subjecting the myocardium to repeated short-term ischemia and reperfusion which also reduced the ischemic reperfusion injury as evidenced by better recovery of left ventricular performance in the preconditioned myocardium. The results of this study indicate that reperfusion of ischemic heart, but not ischemia, induces apoptotic cell death and DNA fragmentation which can be inhibited by myocardial adaptation to ischemia.  相似文献   

15.
A loss of sarcolemmal dystrophin was observed by immuno-fluorescence studies in rabbit hearts subjected to in situ myocardial ischemia and by immuno-blotting of the Triton soluble membrane fraction of isolated rabbit cardiomyocytes subjected to in vitro ischemia. This ischemic loss of dystrophin was a specific event in that no ischemic loss of sarcolemmal -sarcoglycan, -sarcoglycan, DG, or DG was observed. The maintenance of sarcolemmal DG (43 Kd) during ischemia was interesting in that dystrophin binds to the C-terminus of DG. However, during late in vitro ischemia, a 30 Kd band was observed that was immuno-reactive for DG. Additionally, this 30 Kd-DG band was observed in rabbit myocardium subjected to autolysis. Finally, the 30 Kd-DG was observed in the purified sarcolemmal fraction of rabbit cardiomyocytes subjected to a prolonged period of in vitro ischemia, confirming the sarcolemmal localization of this band. The potential patho-physiologic significance of this band was indicated by the appearance of this band at 120–180 min of in vitro ischemia, directly correlating with the onset of irreversible injury, as manifested by osmotic fragility. Additionally the appearance of this band was significantly reduced by the endogenous cardioprotective mechanism, in vitro ischemic preconditioning, which delays the onset of osmotic fragility. In addition to dystrophin, DG binds caveolin-3 and Grb-2 at its C-terminus. The presence of Grb-2 and caveolin-3 in the membrane fractions of oxygenated and ischemic cardiomyocytes was determined by Western blotting. An increase in the level of membrane Grb-2 and caveolin-3 was observed following ischemic preconditioning as compared to control cells. The formation of this 30 Kd-DG degradation product is potentially related to the transition from the reversible to the irreversible phase of myocardial ischemic cell injury and a decrease in 30 Kd-DG might mediate the cardioprotection provided by ischemic preconditioning.  相似文献   

16.
Recent studies have reported that protection from ischemic preconditioning (PC) is blocked by the opioid receptor antagonist naloxone (NAL). We tested whether an opioid agonist could mimic PC in the rabbit heart, whether that protection involved protein kinase C (PKC) activation, and whether opioid receptors act in concert with other PKC-coupled receptors. Rabbit hearts were subjected to 30min coronary occlusions and were reperfused for either 3 (in situ) or 2 (in vitro) h. Infarct size was determined by staining with triphenyltetrazolium chloride. In untreated in situ hearts 38.5 ± 1.6% of the risk zone infarcted. PC with 5 min ischemia/10 min reperfusion significantly limited infarction to 12.7 ± 2.9% (p < 0.01). NAL infusion did not modify infarction (39.6 ± 1.6%) in non-PC hearts, but blocked the effect of one cycle of PC (34.4 ± 3.6% infarction). NAL, however, could not block cardioprotection when PC was amplified with 3 cycles of ischemia/reperfusion (9.9 ± 1.4% infarction, p < 0.01 vs. control). Morphine could also mimic ischemic preconditioning, but only at a dose much higher than would be used clinically (3 mg/kg). In isolated hearts pretreatment with morphine (0.3 M) significantly limited infarction to 9.3 ± 1.2% (p < 0.01 vs. 32.0 ± 3.1% in controls). This cardioprotective effect of morphine could be blocked by either the PKC inhibitor chelerythrine (30.4 ± 2.6% infarction) or NAL (34.0 ± 2.6% infarction). Neither chelerythrine nor NAL by itself modified infarction in non-PC hearts. NAL could not block protection from one cycle of PC in isolated hearts indicating that an intact innervation may be required for endogenous opioid production. Thus, opioid receptors, like other PKC-coupled receptors, participate in the triggering PC in the rabbit heart.  相似文献   

17.
Zhou AM  Li QJ  Chen XL  Li WB 《生理学报》2001,53(4):265-269
采用放射性配基结合法,测定大鼠全脑缺血后海马细胞膜腺苷(adenosine,ADO)受体数量及亲和力的变化,以探讨其与脑缺血耐受形成之间的关系。发现缺血6min即可导致海马组织明显的神经元延迟性死亡(delayed neuron  相似文献   

18.
Protein kinase C (PKC) has been known to play an important role in ischemic preconditioning (IP). This study was designed to examine whether the translocation of PKC is associated with the cardioprotective effects of IP in vivo on infarct size and ventricular arrhythmias in a rat model.Using anesthetized rats, heart rate, systolic blood pressure, infarct size and ventricular arrhythmias during 45 min of coronary occlusion were measured. PKC activity was assayed in both the cytosolic and cell membrane fraction . Brief 3-min periods of ischemia followed by 10 min of reperfusion were used to precondition the myocardium. Calphostin C was used to inhibit PKC.Infarct size was significantly reduced by IP (68.1 (2.5)%, mean (S.E.) vs. 45.2 (3.4)%, p < 0.01). The reduction in infarct size by IP was abolished by pretreatment with calphostin C. The total number of ventricular premature complex (VPC) during 45 min of coronary occlusion was reduced by IP (1474 (169) beats/45 min vs. 256 (82) beats/45 min, p < 0.05). The reduction the total number of VPC induced by IP was abolished by the administration of calphostin C before the episode of brief ischemia. The same tendency was observed in the duration of ventricular tachycardia and the incidence of ventricular fibrillation. PKC activity in the cell membrane fraction transiently increased immediately after IP (100 vs. 142%, p < 0.01) and returned to baseline 15 min after IP. Pretreatment with calphostin C prevented the translocation of PKC.The translocation of PKC plays an important role in the cardioprotective effect of IP on infarct size and ventricular arrhythmias in anesthetized rats.  相似文献   

19.
    
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

20.
Sarcolemmal ATP-sensitive potassium (KATP) channels have been mentioned to participate in preconditioning protection. Since these channels are altered in diabetes, it would be possible that preconditioning does not develop in diabetic (D) hearts. The purpose of this study was to assess whether early (EP) and late (LP) ischemic preconditioning protect diabetic hearts against stunning in a conscious diabetic sheep model and whether diabetes might have altered KATP channel functioning. Sheep received alloxan monohydrate (1 g) and were ascribed to three experimental groups: control (DC, 12 min of ischemia (I) followed by 2 h of reperfusion (R)), early preconditioning (DEP, six 5 min I – 5 min R periods were performed before the 12 min I) and late preconditioning (DLP, same as DEP except that the preconditioning stimulus was performed 24 h before the 12 min I). Regional mechanics during reperfusion was evaluated as the percent recovery of wall thickening fraction (%WTH) expressed as percentage of basal values (100%) and KATP behaviour was indirectly assessed by monophasic action potential duration (MAPD) and sensitivity to glibenclamide blockade (0.1 and 0.4 mg/Kg). The results were compared to those obtained in normal (N) sheep. EP and LP protected against stunning in normal sheep (%WTH: NC = 63 ± 3.7, NLP = 80 ± 5**, NEP equals; 78 ± 3*, *p < 0.05 and **p < 0.01 against NC) whereas contrary results occurred in diabetic ones, where DLP (%WTH = 60 ± 4) afforded a similar recovery to DC (%WTH = 54 ± 5) and DEP surprisingly worsened instead of improving mechanical function (%WTH = 38 ± 6, p < 0.01 against DC). KATP channel behaviour appeared altered in diabetic hearts as shown by MAPD during ischemia in normal sheep (153 ± 9 msec) compared to diabetic ones (128 ± 11 msec, p < 0.05) and by the sensitivity to glibenclamide (while 0.4 mg/Kg blocked action potential shortening in normal and diabetic animals, 0.1 mg/Kg completely blocked KATP in diabetic but not in normal hearts, p ( 0.05). A sarcolemmal KATP channel dysfunction might afford a primary approach to explain the absence of ischemic preconditioning protection against stunning in diabetic sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号