首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sampled mosquitoes across 18 sites established at different elevations and stretching from the north to the south of Isla Santa Cruz, Galápagos. Two commonly occurring species, Ae. taeniorhynchus and Cx. quinquefasciatus, were collected along with environmental variables characteristic of the trapping sites to assess their influence on mosquito abundance and occurrence in the dry season of 2015. We captured Ae. taeniorhynchus at 14 out of 18 sites and Cx. quinquefasciatus at low and high elevation sites on Santa Cruz. We utilized two generalized linear models; the first assessed the influence of environmental variables on abundances of Ae. taeniorhynchus and the second assessed the influence of these variables on the presence of Cx. quinquefasciatus. Populations of both mosquito species declined with elevation. Rainfall data were limited, as we sampled during the dry season of 2015. Distance to mangroves and maximum humidity were significant in influencing the abundance of Ae. taeniorhynchus, while maximum humidity was found to significantly influence the presence of Cx. quinquefasciatus. Both species occurred in sites where temperature, precipitation, and humidity should allow for mosquito development as well as parasitic development of the protozoan parasites that cause avian malaria. Further research involving year‐round sampling of mosquitoes and accompanying meteorological data as well as experimental studies on vector competence are required to understand disease dynamics of parasites such as avian malaria in Galápagos.  相似文献   

2.
The black salt marsh mosquito, Aedes taeniorhynchus, is a serious nuisance pest and a potential vector of a number of arboviruses. This study examined the effect of wind direction, wind speed, temperature, and time of year on the abundance of Ae. taeniorhynchus collected in CO2‐baited light traps at 12 sites in the Florida Keys during 2004. The dependent variable analyzed was the natural log of weekly mosquito abundance. The previous week's wind speed and wind direction, and the current week's temperature were used as independent variables. Simple and multiple linear regression models were used to assess the significance and nature of association between the meteorological variables and the natural log of mosquito abundance, and to determine whether the meteorological variables had significant associations with mosquito abundance after also controlling for time of year. Week of year was treated as a circular independent variable in the regression models, using the sine and cosine of week in radians to model the periodic seasonal fluctuation in mosquito abundance. Mosquito abundance was significantly associated with all meteorological variables and with week of year. Individually, previous week's wind speed and wind direction, and current week's temperature were able to explain respectively 24.5%, 24.5%, and 52.1% of the variation in mosquito abundance observed over the year. Week of year had the strongest individual association with mosquito abundance, explaining 65.7% of the variation in mosquito abundance. The meteorological variables were still significantly associated with mosquito abundance, after controlling for week of year. Week and the meteorological variables together explained 79.2% of the variation in mosquito abundance. The regression models fit to the data from this study suggest a strong periodic seasonal variation in mosquito abundance, with meteorological conditions explaining a significant portion of the variation beyond the seasonal trend.  相似文献   

3.
Characterization of the fine‐scale population dynamics of the mosquito Aedes taeniorhynchus is needed to improve our understanding of its role as a disease vector in the Galapagos Islands. We used microsatellite data to assess the genetic structure of coastal and highland mosquito populations and patterns of gene flow between the two habitats through time on Santa Cruz Island. In addition, we assessed possible associations of mosquito abundance and genetic diversity with environmental variables. The coastal and highland mosquito populations were highly differentiated from each other all year round, with some gene flow detected only during periods of increased precipitation. The results support the hypothesis that selection arising from ecological differences between habitats is driving adaptation and divergence in A. taeniorhynchus, and maintaining long‐term genetic differentiation of the populations against gene flow. The highland and lowland populations may constitute an example of incipient speciation in progress. Highland populations were characterized by lower observed heterozygosity and allelic richness, suggesting a founder effect and/or lower breeding site availability in the highlands. A lack of reduction in genetic diversity over time in highland populations suggests that they survive dry periods as dormant eggs. Association between mosquito abundance and precipitation was strong in the highlands, whereas tide height was the main factor affecting mosquito abundance on the coast. Our findings suggests differences in the infection dynamics of mosquito‐borne parasites in the highlands compared to the coast, and a higher risk of mosquito‐driven disease spread across these habitats during periods of increased precipitation.  相似文献   

4.
5.
Will mangrove encroachment into saltmarshes affect saltwater mosquito habitats? To address this, we synthesized information from two perspectives: 1) at a detailed level, the immature mosquito habitat within mangroves; 2) at a more general or regional level, changes due to mangrove expansion into saltmarshes. This is a synthesis of two research projects. One showed that mosquito larval habitats in mangroves are complex, related to the detailed interactions between topography and tidal patterns and that not all parts of a mangrove forest are suitable habitat. The other, based on remote sensing and analysis of rainfall data, showed that mangrove encroachment in eastern Australia is related to both climate and human land use over several decades (1972–2004). An important question emerged: when mangroves encroach into saltmarshes will they displace saltmarsh immature mosquito habitats or will they replace them with mangrove ones? There is no simple answer: it will vary with climate change and sea level scenario and how these affect the system. We conclude that mosquito management, which is locally implemented, needs to be integrated with land use planning systems, which often operate at a more general level.  相似文献   

6.
Nearly 30% of emerging infectious disease events are caused by vector‐borne pathogens with wildlife origins. Their transmission involves a complex interplay among pathogens, arthropod vectors, the environment and host species, and they pose a risk for public health, livestock and wildlife species. Examining habitat associations of vector species known to transmit infectious diseases, and quantifying spatio‐temporal dynamics of mosquito vector communities is one aspect of the holistic One Health approach that is necessary to develop effective control measures. A survey was conducted from May to August, 2010 of the abundance and diversity of mosquito species occurring in the mixed‐grass prairie habitat of the Smoky Hills of Kansas. This region is an important breeding ground for North America's grassland nesting birds and, as such, it could represent an important habitat for the enzootic amplification cycle of avian malaria and infectious encephalitides, as well as spill‐over events to humans and livestock. A total of 11 species, belonging to the three genera Aedes, Anopheles, and Culex, was collected during this study. Aedes nigromaculis, Ae. sollicitans, Ae. taeniorhynchus, Culex salinarius, and Cx. tarsalis accounted for 98% of the collected species. Multiple linear regression models suggested that mosquito abundances in the grasslands of the central Great Plains were explained by meteorological and environmental variables. Temporal dynamics in mosquito abundances were well supported by models that included maximum and minimum temperature indices (adjusted R2= 0.73). Spatial dynamics of mosquito abundances were best explained by a model containing the following environmental variables (adjusted R2=0.37): ground curvature, topographic wetness index, distance to woodland, and distance to road. The mosquito species we detected are known vectors for infectious encephalitides, including West Nile virus. Understanding the microhabitat characteristics of these mosquito species in a grassland ecosystem will aid in the control and management of these disease vectors.  相似文献   

7.
8.
Mosquito collections were carried out on microfilaraemic dogs, positive for Dirofilaria sp., for 18 consecutive nights in the coastal town of Celestún, Yucatan, southeast Mexico, during the rainy season (August) of 2007. A total of 292 female mosquitoes representing 12 species of dipteran Culicidae were collected: Anopheles albimanus (Wiedemann); Anopheles crucians (Wiedemann); Anopheles pseudopunctipennis (Theobald); Culex coronator (Dyar & Knab); Culex interrogator (Dyar & Knab); Culex nigripalpus (Theobald); Culex quinquefasciatus (Say); Culex salinarius (Coquillett); Aedes aegypti (Linnaeus); Aedes scapularis (Rondani); Aedes sollicitans (Walker), and Aedes taeniorhynchus (Wiedemann). Aedes taeniorhynchus and Cx. quinquefasciatus were the species found most commonly feeding on the dogs. Filarial nematodes were observed by microscopy in nine of the mosquito species collected; however, third‐instar larvae were only observed in Ae. taeniorhynchus and An. crucians. Of 76 Ae. taeniorhynchus specimens found positive for Dirofilaria sp. by dissection, 14 were confirmed to be positive for Dirofilaria immitis (Leidy) by polymerase chain reaction (PCR). The resulting infection rate for D. immitis confirmed by PCR (6.2%) is higher than any infection rate for Ae. taeniorhynchus previously reported from the Americas.  相似文献   

9.
The saltwater mosquito, Aedes vigilax, is prolific in coastal wetlands including mangroves and saltmarshes. Ae. vigilax is a vector for arboviruses such as Ross River and Barmah Forest viruses, with significant consequences for human health and economic productivity. In Australia the dominant form of mosquito control is chemicals. For mangroves, this is because there is a critical lack of knowledge supporting alternative approaches, such as environmental modification or biological control using larvivorous fish. This review examines the potential of fish as biological agents for the control of mosquito larvae in mangroves. We consider two key aspects: how larvivorous fish use mangroves; and can larvivorous fish reduce larval mosquito populations sufficiently to provide effective mosquito control? The link between fish and mangroves is reasonably well established, where mangroves act as refuge habitat for small and juvenile fish. Also, research has established that fish can be significant predators of mosquitoes, and therefore may be effective control agents. However, studies of fish activity within mangroves are limited to study of the fringe of the mangroves and not the internal structure of mangrove basins and as a result, fish populations within these areas remain unstudied. Also, until recently there was little appreciation of the mangrove-mosquito habitat relationship and, as a consequence, the importance of the mangrove basin as the key mosquito habitat has also been overlooked in the literature. Similarly, the predator/prey relationships between fish and mosquitoes within mangrove basin environments also remain unstudied, and therefore the importance of fish for mosquito management in mangrove basins is not known. There are substantial knowledge gaps regarding the potential of fish in controlling larval mosquitoes in mangroves. The gaps include: understanding of how larvivorous fish use mangrove basins; the nature of the fish-mosquito predator/prey relationship in mangrove basins; and whether larvivorous fish are effective as a mosquito control option in mangroves.  相似文献   

10.
An avian malaria parasite (genus Plasmodium) has been detected consistently in the Galapagos Penguin (Spheniscus mendiculus) and less frequently in some passerines. We sampled three resident mosquito species (Aedes taeniorhynchus, Culex quinquefasciatus, and Aedes aegypti) using CDC light and gravid traps on three islands in 2012, 2013, and 2014. We sampled along altitudinal gradients to ask whether there are mosquito‐free refugia at higher elevations as there are in Hawaii. We captured both Ae. taeniorhynchus and Cx. quinquefasciatus at all sites. However, abundances differed across islands and years and declined significantly with elevation. Aedes aegypti were scarce and limited to areas of human inhabitation. These results were corroborated by two negative binomial regression models which found altitude, year, trap type, and island as categorized by human inhabitation to be significant factors influencing the distributions of both Ae. taeniorhynchus and Cx. quinquefasciatus. Annual differences at the highest altitudes in Isabela and Santa Cruz indicate the lack of a stable highland refuge if either species is found to be a major vector of a parasite, such as avian malaria in Galapagos. Further work is needed to confirm the vector potential of both species to understand the disease dynamics of avian malaria in Galapagos.  相似文献   

11.
12.
Abstract Two mosquito species, Aedes camptorhynchus (Thomson) and Aedes vigilax (Skuse) (Diptera: Culicidae) are responsible for significant nuisance biting and disease transmission in southern coastal Australia. Mosquito abundance, tide height, temperature and rainfall data were collected over three summer seasons (2002, 2003, 2004) at Port Pirie, South Australia and subjected to statistical analysis to develop ecological models for predicting problem mosquito outbreaks. A logistic regression model for Ae. camptorhynchus gave a predictive R2 of 0.30 using mean air temperature, whereas, for Ae. vigilax, tide height, mean air temperature and day length yielded a regression with an R2 of 0.68. These models identify significant environmental drivers for both species and may be useful in the prediction of future outbreaks, particularly of Ae. vigilax.  相似文献   

13.
Floodwater mosquitoes (Diptera: Culicidae) are associated with periodically flooded wet meadows, marshes, and swamps in floodplains of major rivers worldwide, and their larvae are abundant in the shallow parts of flooded areas. The nuisance caused by the blood‐seeking adult female mosquitoes motivates mosquito control. Larviciding with Bacillus thuringiensis israelensis is considered the most environmentally safe method. However, some concern has been raised whether aquatic predatory insects could be indirectly affected by this reduction in a potential vital prey. Top predators in the temporary wetlands in the River Dalälven floodplains are diving beetles (Coleoptera: Dytiscidae), and Aedes sticticus and Ae. vexans are the target species for mosquito control. For detailed studies on this aquatic predator–prey system, we developed a polymerase chain reaction (PCR) assay for detection of mosquito DNA in the guts of medium‐sized diving beetles. Primers were designed for amplifying short mitochondrial DNA fragments of the cytochrome C oxidase subunit I (COI) gene in Ae. sticticus and Ae. vexans, respectively. Primer specificity was confirmed and half‐life detectability of Ae. sticticus DNA in diving beetle guts was derived from a feeding and digestion experiment. The Ae. sticticus DNA within diving beetle guts was detected up to 12 h postfeeding, and half‐life detectability was estimated to 5.6 h. In addition, field caught diving beetles were screened for Ae. sticticus and Ae. vexans DNA and in 14% of the diving beetles one or both mosquito species were detected, showing that these mosquito species are utilized as food by the diving beetles.  相似文献   

14.
In the southern Appalachia of the U.S., Aedes mosquitoes maintain and transmit La Crosse virus (LACV) which causes La Crosse encephalitis, a neuroinvasive disease of children. In response to mosquito outbreaks, communities organize prevention, detection, and response measures that are dependent on local characteristics of the mosquito population and the community. Knowing Ae. albopictus is an accessory vector of LACV and a nuisance biter, our objective was to build a system of ordinary differential equations to model dynamics in a single season using our data and readily available environmental variables that can reflect the abundance and activity of Ae. albopictus. Consequently, we built an Ae. albopictus single‐season mathematical model for eastern Tennessee to fit our 2013 mosquito collection data in order to understand the population fluctuations. We included precipitation, temperature, and rate of change of temperature in the model because Aedes mosquitoes oviposit desiccant tolerant eggs with peak activity occurring over 26° C and those data are readily available and used frequently as forecast predictors. Our ordinary differential equation model accurately fits the data and facilitates predictions and better understanding of Ae. albopictus populations in southern Appalachia.  相似文献   

15.
Patterns of autogeny were compared in 3 mosquito species from a coastal site in Indian River County, Florida. Both autogenous and anautogenous females were found in Aedes taeniorhynchus (Wiedemann) and Wyeomyia vanduzeei Dyar and Knab populations. Mating was a prerequisite for autogeny in certain females of both species (see Tables I and II). All of the Deinocerites cancer Theobald females were autogenous, whether mated or not.

The expression of autogeny in A. taeniorhynchus depended upon environmental conditions during the larval stages and the geographical origin of the population. For some A. taeniorhynchus females, mating was needed for autogenous ovarian maturation under all experimental conditions, whereas for others mating became a requirement for autogeny only when the mosquitoes encountered the less favorable larval conditions. In nature, the dominant form of autogeny in A. taeniorhynchus appeared to be the male-induced type.

Among W. vanduzeei and A. taeniorhynchus populations, the male-induced form of autogeny was associated with relatively low levels of autogenous fecundity. However, females that possess the capacity for male-induced autogeny have a greater potential for enhancing the size of their initial egg batch by blood-feeding than do females that can express autogeny independent of mating.  相似文献   

16.
Avian malaria (Plasmodium spp.) has been implicated in the decline of avian populations in the Hawaiian Islands and it is generally agreed that geographically isolated and immunologically naïve bird populations are particularly vulnerable to the pathogenic effects of invasive malaria parasites. In order to assess the potential disease risk of malaria to the avifauna of Socorro Island, México, we surveyed for Plasmodium isolates from 1,300 resident field‐caught mosquitoes. Most of them were identified as Aedes (Ochlerotatus) taeniorhynchus (Wiedemann, 1821), which were abundant in the salt marshes. We also collected Culex quinquefasciatus Say, 1823 close to human dwellings. Mitochondrial ND5 and COII gene sequences of Ae. taeniorhynchus were analyzed and compared to corresponding sequences of mosquitoes of the Galápagos Islands, Latin America, and the North American mainland. Aedes lineages from Socorro Island clustered most closely with a lineage from the continental U.S. Plasmodium spp. DNA was isolated from both species of mosquitoes. From 38 positive pools, we isolated 11 distinct mitochondrial Cytb lineages of Plasmodium spp. Seven of the Plasmodium lineages represent previously documented avian infective strains while four were new lineages. Our results confirm a potential risk for the spread of avian malaria and underscore the need to monitor both the mosquito and avian populations as a necessary conservation measure to protect endangered bird species on Socorro Island.  相似文献   

17.
The occurrence and abundance of mosquito populations may be associated with the abundance of predators. We examined the relationship between aquatic predators and populations of mosquitoes in animal water troughs in Waikanae, New Zealand. We also investigated the effects of water volume and environmental factors (temperature, rainfall, wind speed, humidity, and pressure) in order to further understand factors influencing mosquito and predator populations. Logistic regression indicated that the presence or absence of mosquitoes was primarily affected by three factors: predator abundance, week of observation, and water volume. Pearson's correlation indicated that the presence of predators had a positive correlation with water volume (r2= 0.176, p< 0.05). Otherwise, the presence of mosquito larvae in water troughs was negatively correlated with water volume (r2=?0.159, p=0.022) and wind speed (r2=0.142, p=0.041). We established a translocation experiment in which predators or mosquitoes were moved between troughs in order to examine the prey survival rate after exposure to Anisops wakefieldi predators. The survival rate of mosquitoes was not significantly different, between 0–0.1%, irrespective of the number of predators translocated (1–9) or the initial mosquito density (20–70 larvae). Our results suggested that A. wakefieldi predators may have the potential to be a promising biological control tool for the control of mosquito populations by altering mosquito population dynamics.  相似文献   

18.
The mosquito Aedes aegypti is the primary vector of dengue and is common throughout tropical and subtropical regions. Its distribution is modulated by environmental factors, such as temperature. This study aimed to evaluate the influence of temperature on the life cycle and expansion of Ae. aegypti populations in the cities of Campina Grande, João Pessoa, and Patos. Samples of Ae. aegypti were collected in the three cities and raised in the laboratory. We assessed the life cycles of the three Ae. aegypti populations under six constant temperatures (16, 22, 28, 33, 36, and 39°C), selected on the basis of historical temperature tendencies of each city. We also used existing climate data to calculate projected temperature increases for all three areas. Our results suggest that Campina Grande, João Pessoa, and Patos will experience, respectively, maximum temperature increases of 0.030°C/year, 0.069°C/year, and 0.061°C/year, and minimum temperature increases of 0.019°C/year, ?0.047°C/year, and ?0.086°C/year. These projected increases will result in temperatures favorable to the Ae. aegypti life cycle, causing rapid population growth. Therefore, Ae. aegypti populations are likely to expand in the mesoregions represented by these cities.  相似文献   

19.
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.  相似文献   

20.
This study assessed the risk of larval displacement of the eastern treehole mosquito, Aedes triseriatus, and the northern house mosquito, Culex pipiens, by Aedes albopictus, the Asian tiger mosquito, during the establishment and successional stages of novel larval mosquito treehole and ground‐container habitats in the state of New Jersey, U.S.A. Culex pipiens and Culex restuans were the first mosquito species to colonize ground‐container habitats and were the dominant larval species throughout the study period, whereas Ae. albopictus was late to colonize ground habitats and accounted for less than 15% of weekly larval collections once established. Ae. albopictus had a much stronger community presence within treehole ovitraps; however, Ae. albopictus never reached the average larval densities of the expected primary colonizer, Ae. triseriatus. Throughout the study period, the weekly abundances of Ae. triseriatus and Ae. albopictus were positively correlated and there were no significant differences between the abundances of each species. The larval dominance of Ae. triseriatus appears to be enhanced by the presence of Toxorhynchites rutilus septentrionalis, a large predatory mosquito species. When Tx. rut. septentrionalis was present, mature larvae (3rd–4th instar) of Ae. albopictus were also present in only 16.7% of collections, whereas mature larvae of Ae. triseriatus were collected concurrently with Tx. rut. septentrionalis in 53.8% of collections. These data suggest that Ae. triseriatus is at a greater risk of displacement by Ae. albopictus than are Cx. pipiens and Cx. restuans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号