首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK).

Methodology

To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT) or FAK small interfering RNA (siRNA).

Principal Findings

Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim) expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim.

Conclusions

These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.  相似文献   

2.

Objective

To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume.

Methods

The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures.

Results

The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p < 0.0001). Akaike''s information criterion showed the model incorporating both parameters provided the most accurate prediction of emphysema.

Conclusion

Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.  相似文献   

3.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

4.

Background

Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.

Results

In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment.

Conclusions

The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells  相似文献   

5.

Background

Human olfactomedin 4 (OLFM4) gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance.

Methods

OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2) or tumor necrosis factor-alpha (TNF α) were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk.

Results

The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P < 0.01). OLFM4 knockdown did not trigger obvious cell apoptosis but increased H2O2 or TNF α-induced apoptosis and caspase-3 activity (all P < 0.01). Treatment of Z-VAD-fmk attenuated caspase-3 activity and significantly reversed the H2O2 or TNF α-induced apoptosis in OLFM4 knockdown cells (all P < 0.01).

Conclusion

Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.  相似文献   

6.
Yang D  Liu N  Zuo C  Lei S  Wu X  Zhou F  Liu C  Zhu H 《PloS one》2011,6(11):e27552

Background and Aim

The interaction between hepatitis C virus (HCV) and innate antiviral defense systems in primary human hepatocytes is not well understood. The objective of this study is to examine how primary human hepatocytes response to HCV infection.

Methods

An infectious HCV isolate JFH1 was used to infect isolated primary human hepatocytes. HCV RNA or NS5A protein in the cells was detected by real-time PCR or immunofluorescence staining respectively. Apoptosis was examined with flow cytometry. Mechanisms of HCV-induced IFN-β expression and apoptosis were determined.

Results

Primary human hepatocytes were susceptible to JFH1 virus and released infectious virus. IFN-α inhibited viral RNA replication in the cells. IFN-β and interferon-stimulated genes were induced in the cells during acute infection. HCV infection induced apoptosis of primary human hepatocytes through the TRAIL-mediated pathway. Silencing RIG-I expression in primary human hepatocytes inhibited IFN-β and TRAIL expression and blocked apoptosis of the cells, which facilitated viral RNA replication in the cells. Moreover, HCV NS34A protein inhibited viral induced IFN-β expression in primary human hepatocytes.

Conclusion

Innate host response is intact in HCV-infected primary human hepatocytes. RIG-I plays a key role in the induction of IFN and TRAIL by viruses and apoptosis of primary human hepatocytes via activation of the TRAIL-mediated pathway. HCV NS34A protein appears to be capable of disrupting the innate antiviral host responses in primary human hepatocytes. Our study provides a novel mechanism by which primary human hepatocytes respond to natural HCV infection.  相似文献   

7.

Purpose

PP2A is a serine/threonine phosphatase critical to physiological processes, including apoptosis. Cell penetrating peptides are molecules that can translocate into cells without causing membrane damage. Our goal was to develop cell-penetrating fusion peptides specifically designed to disrupt the caspase-9/PP2A interaction and evaluate their therapeutic potential in vitro and in vivo.

Experimental Design

We generated a peptide containing a penetrating sequence associated to the interaction motif between human caspase-9 and PP2A (DPT-C9h), in order to target their association. Using tumour cell lines, primary human cells and primary human breast cancer (BC) xenografts, we investigated the capacity of DPT-C9h to provoke apoptosis in vitro and inhibition of tumour growth (TGI) in vivo. DPT-C9h was intraperitonealy administered at doses from 1 to 25 mg/kg/day for 5 weeks. Relative Tumour Volume (RTV) was calculated.

Results

We demonstrated that DPT-C9h specifically target caspase-9/PP2A interaction in vitro and in vivo and induced caspase-9-dependent apoptosis in cancer cell lines. DPT-C9h also induced significant TGI in BC xenografts models. The mouse-specific peptide DPT-C9 also induced TGI in lung (K-Ras model) and breast cancer (PyMT) models. DPT-C9h has a specific effect on transformed B cells isolated from chronic lymphocytic leukemia patients without any effect on primary healthy cells. Finally, neither toxicity nor immunogenic responses were observed.

Conclusion

Using the cell-penetrating peptides blocking caspase-9/PP2A interactions, we have demonstrated that DPT-C9h had a strong therapeutic effect in vitro and in vivo in mouse models of tumour progression.  相似文献   

8.

Background

Regional lung sound intensity in chronic obstructive pulmonary disease (COPD) patients is influenced by the severity and distribution of emphysema, obstructed peripheral airways, and altered ribcage and diaphragm configurations and movements due to hyperinflation. Changes in the lung sound distribution accompanied by pulmonary function improvements in COPD patients were observed after bronchodilator inhalation. We investigated the association of lung sound distribution with pulmonary functions, and the effects of emphysematous lesions on this association. These studies were designed to acquire the basic knowledge necessary for the application of lung sound analysis in the physiological evaluation of COPD patients.

Methods

Pulmonary function tests and the percentage of upper- and lower-lung sound intensity (quantitative lung data [QLD]) were evaluated in 47 stable male COPD patients (54 - 82 years of age). In 39 patients, computed tomography taken within 6 months of the study was available and analyzed.

Results

The ratio of lower QLD to upper QLD showed significant positive correlations with FEV1 %predicted (%FEV1; ρ = 0.45, p<0.005) and MEF50 %predicted (%MEF50; ρ = 0.46, p<0.005). These correlations were not observed in COPD patients with dominant emphysema (% low attenuation area >40%, n = 20) and were stronger in less emphysematous patients (n = 19, %FEV1; ρ = 0.64, p<0.005, %MEF50; ρ = 0.71, p<0.001).

Conclusions

In COPD patients, the ratio of lower- to upper-lung sound intensities decreased according to the severity of obstructive changes, although emphysematous lesions considerably affected lung sound distribution.  相似文献   

9.

Background

Nitrosylcobalamin (NO-Cbl) is a chemotherapeutic pro-drug derived from vitamin B12 that preferentially delivers nitric oxide (NO) to tumor cells, based upon increased receptor expression. NO-Cbl induces Apo2L/TRAIL-mediated apoptosis and inhibits survival signaling in a variety of malignant cell lines. Chemotherapeutic agents often simultaneously induce an apoptotic signal and activation of NF-κB, which has the undesired effect of promoting cell survival. The specific aims of this study were to 1) measure the anti-tumor effects of NO-Cbl alone and in combination with conventional chemotherapeutic agents, and to 2) examine the mechanism of action of NO-Cbl as a single agent and in combination therapy.

Methodology

Using anti-proliferative assays, electrophoretic mobility shift assay (EMSA), immunoblot analysis and kinase assays, we demonstrate an increase in the effectiveness of chemotherapeutic agents in combination with NO-Cbl as a result of suppressed NF-κB activation.

Results

Eighteen chemotherapeutic agents were tested in combination with NO-Cbl, in thirteen malignant cell lines, resulting in a synergistic anti-proliferative effect in 78% of the combinations tested. NO-Cbl pre-treatment resulted in decreased NF-κB DNA binding activity, inhibition of IκB kinase (IKK) enzymatic activity, decreased AKT activation, increased caspase-8 and PARP cleavage, and decreased cellular XIAP protein levels.

Conclusion

The use of NO-Cbl to inhibit survival signaling may enhance drug efficacy by preventing concomitant activation of NF-κB or AKT.  相似文献   

10.

Background

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.

Methods

Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.

Results

Treatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.

Conclusions

These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.  相似文献   

11.
Yuan Z  Wang F  Zhao Z  Zhao X  Qiu J  Nie C  Wei Y 《PloS one》2011,6(5):e20586

Background

Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to the effective treatment of human ovarian cancer. Previous reports indicated that arsenic trioxide (ATO) induces cell apoptosis in both drug-sensitive and -resistant ovarian cancer cells.

Principal Findings

In this study, we determined the molecular mechanism of ATO-induced apoptosis in ovarian cancer cells. Our data demonstrated that ATO induced cell apoptosis by decreasing levels of phosphorylated AKT (p-AKT) and activating caspase-3 and caspase-9. Importantly, BIM played a critical role in ATO-induced apoptosis. The inhibition of BIM expression prevented AKT dephosphorylation and inhibited caspase-3 activation during cell apoptosis. However, surprisingly, gene silencing of AKT or FOXO3A had little effect on BIM expression and phosphorylation. Moreover, the activation of caspase-3 by ATO treatment improved AKT dephosphorylation, not only by cleaving the regulatory A subunit of protein phosphatase 2A (PP2A), but also by increasing its activation. Furthermore, our data indicated that the c-Jun N-terminal kinases (JNK) pathway is involved in the regulation of BIM expression.

Conclusions

We demonstrated the roles of BIM in ATO-induced apoptosis and the molecular mechanisms of BIM expression regulated by ATO during ovarian cancer cell apoptosis. Our findings suggest that BIM plays an important role in regulating p-AKT by activating caspase-3 and that BIM mediates the level of AKT phosphorylation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.  相似文献   

12.

Background

Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis.

Methods

In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line.

Results

Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity.

Conclusions

We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit.

Electronic supplementary material

The online version of this article (doi:10.1186/s12935-014-0151-3) contains supplementary material, which is available to authorized users.  相似文献   

13.

Objectives

Variable ventilation (VV) seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP) in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels.

Design

Randomized experimental study.

Setting

Animal research facility.

Subjects

Forty-nine male Wistar rats (200–270 g).

Interventions

Animals were ventilated during 2 hours with protective low tidal volume (VT) in volume control ventilation (VCV) or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers), obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level.

Measurements and Main Results

Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha) as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups.

Conclusions

VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia.  相似文献   

14.

Background

Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury.

Methods

Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed.

Results

A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation.

Conclusion

These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.  相似文献   

15.

Background

This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation.

Results

A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation.

Conclusion

This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.  相似文献   

16.
Wu J  Song R  Song W  Li Y  Zhang Q  Chen Y  Fu Y  Fang W  Wang J  Zhong Z  Ling H  Zhang L  Zhang F 《PloS one》2011,6(7):e21966

Background

Chlorpromazine (CPZ), a commonly used antipsychotic drug, was found to play a neuroprotective role in various models of toxicity. However, whether CPZ has the potential to affect brain apoptosis in vivo is still unknown. The purpose of this study was to investigate the potential effect of CPZ on the apoptosis induced by exogenous stimuli.

Methodology

The ethanol treated infant rat was utilized as a valid apoptotic model, which is commonly used and could trigger robust apoptosis in brain tissue. Prior to the induction of apoptosis by subcutaneous injection of ethanol, 7-day-old rats were treated with CPZ at several doses (5 mg/kg, 10 mg/kg and 20 mg/kg) by intraperitoneal injection. Apoptotic cells in the brain were measured using TUNEL analysis, and the levels of cleaved caspase-3, cytochrome c, the pro-apoptotic factor Bax and the anti-apoptotic factor Bcl-2 were assessed by immunostaining or western blot.

Findings

Compared to the group injected with ethanol only, the brains of the CPZ-pretreated rats had fewer apoptotic cells, lower expression of cleaved caspase-3, cytochrome c and Bax, and higher expression of Bcl-2. These results demonstrate that CPZ could prevent apoptosis in the brain by regulating the mitochondrial pathway.

Conclusions

CPZ exerts an inhibitory effect on apoptosis induced by ethanol in the rat brain, intimating that it may offer a means of protecting nerve cells from apoptosis induced by exogenous stimuli.  相似文献   

17.
18.

Background

Heat stress can be acutely cytotoxic, and heat stress-induced apoptosis is a prominent pathological feature of heat-related illnesses, although the precise mechanisms by which heat stress triggers apoptosis are poorly defined.

Methods

The percentages of viability and cell death were assessed by WST-1 and LDH release assays. Apoptosis was assayed by DNA fragmentation and caspase activity. Expression of cleaved PARP, Apaf-1, phospho-PERK, Phospho-eIF2a, ATF4, XBP-1s, ATF6, GRP78, phospho-IP3R, RYR and SERCA was estimated by Western blot. The effect of calcium overload was determined using flow cytometric analysis with the fluorescent probe Fluo-3/AM. The generation of ROS (O2 , H2O2, NO) was labeled by confocal laser scanning microscopy images of fluorescently and flow cytometry.

Results

In this study, we found that heat stress in HUVEC cells activated initiators of three major unfolded protein response (UPR) signaling transduction pathways: PERK-eIF2a-ATF4, IRE1-XBP-1S and ATF6 to protect against ER stress, although activation declined over time following cessation of heat stress. Furthermore, we show that intense heat stress may induce apoptosis in HUVEC cells through the calcium-mediated mitochondrial apoptotic pathway, as indicated by elevation of cytoplasmic Ca2+, expression of Apaf-1, activation of caspase-9 and caspase-3, PARP cleavage, and ultimately nucleosomal DNA fragmentation; Reactive oxygen species (ROS) appear to act upstream in this process. In addition, we provide evidence that IP3R upregulation may promote influx of Ca2+ into the cytoplasm after heat stress.

Conclusion

Our findings describe a novel mechanism for heat stress-induced apoptosis in HUVEC cells: following elevation of cytoplasm Ca2+, activation of the mitochondrial apoptotic pathway via the IP3R upregulation, with ROS acting as an upstream regulator of the process.  相似文献   

19.

Rationale

Surfactant protein D (SP-D) has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene) related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis.

Objective

In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS).

Methods

Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd−/−) and iNOS single knockout mice (NOS2−/−) as well as wild type (WT) littermates.

Measurements and Results

DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd−/− demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS.

Conclusion

iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号