首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One major unresolved question in the field of pancreas biology is whether ductal cells have the ability to generate insulin-producing β-cells. Conclusive examination of this question has been limited by the lack of appropriate tools to efficiently and specifically label ductal cells in vivo. We generated Sox9CreER(T2) mice, which, during adulthood, allow for labeling of an average of 70% of pancreatic ductal cells, including terminal duct/centroacinar cells. Fate-mapping studies of the Sox9(+) domain revealed endocrine and acinar cell neogenesis from Sox9(+) cells throughout embryogenesis. Very small numbers of non-β endocrine cells continue to arise from Sox9(+) cells in early postnatal life, but no endocrine or acinar cell neogenesis from Sox9(+) cells occurs during adulthood. In the adult pancreas, pancreatic injury by partial duct ligation (PDL) has been suggested to induce β-cell regeneration from a transient Ngn3(+) endocrine progenitor cell population. Here, we identify ductal cells as a cell of origin for PDL-induced Ngn3(+) cells, but fail to observe β-cell neogenesis from duct-derived cells. Therefore, although PDL leads to activation of Ngn3 expression in ducts, PDL does not induce appropriate cues to allow for completion of the entire β-cell neogenesis program. In conclusion, although endocrine cells arise from the Sox9(+) ductal domain throughout embryogenesis and the early postnatal period, Sox9(+) ductal cells of the adult pancreas no longer give rise to endocrine cells under both normal conditions and in response to PDL.  相似文献   

2.

Aim/Hypothesis

The adult mammalian pancreas has limited ability to regenerate in order to restore adequate insulin production from multipotent progenitors, the identity and function of which remain poorly understood. Here we test whether the TNF family member TWEAK (TNF-like weak inducer of apoptosis) promotes β-cell neogenesis from proliferating pancreatic ductal epithelium in adult mice.

Methods

C57Bl/6J mice were treated with Fc-TWEAK and pancreas harvested at different time points for analysis by histology and immunohistochemistry. For lineage tracing, 4 week old double transgenic mice CAII-CreERTM: R26R-eYFP were implanted with tamoxifen pellet, injected with Fc-TWEAK or control Ig twice weekly and analyzed at day 18 for TWEAK-induced duct cell progeny by costaining for insulin and YFP. The effect of TWEAK on pancreatic regeneration was determined by pancytokeratin immunostaining of paraffin embedded sections from wildtype and TWEAK receptor (Fn14) deficient mice after Px.

Results

TWEAK stimulates proliferation of ductal epithelial cells through its receptor Fn14, while it has no mitogenic effect on pancreatic α- or β-cells or acinar cells. Importantly, TWEAK induces transient expression of endogenous Ngn3, a master regulator of endocrine cell development, and induces focal ductal structures with characteristics of regeneration foci. In addition, we identify by lineage tracing TWEAK-induced pancreatic β-cells derived from pancreatic duct epithelial cells. Conversely, we show that Fn14 deficiency delays formation of regenerating foci after Px and limits their expansion.

Conclusions/Interpretation

We conclude that TWEAK is a novel factor mediating pancreatic β-cell neogenesis from ductal epithelium in normal adult mice.  相似文献   

3.
4.
Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.  相似文献   

5.
Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle–dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro.  相似文献   

6.
The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G0-phase islet cells into G1/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.Key words: cell cycle regulation, adult pancreatic progenitor cells, proliferation, differentiation, islets regeneration, diabetes  相似文献   

7.
It is unclear whether the cellular origin of various forms of pancreatic cancer involves transformation or transdifferentiation of different target cells or whether tumors arise from common precursors, with tumor types determined by the specific genetic alterations. Previous studies suggested that pancreatic ductal carcinomas might be induced by polyoma middle T antigen (PyMT) expressed in non-ductal cells. To ask whether PyMT transforms and transdifferentiates endocrine cells toward exocrine tumor phenotypes, we generated transgenic mice that carry tetracycline-inducible PyMT and a linked luciferase reporter. Induction of PyMT in β cells causes β-cell hyperplastic lesions that do not progress to malignant neoplasms. When PyMT is de-induced, β cell proliferation and growth cease; however, regression does not occur, suggesting that continued production of PyMT is not required to maintain the viable expanded β cell population. In contrast, induction of PyMT in early pancreatic progenitor cells under the control of Pdx1 produces acinar cell carcinomas and β-cell hyperplasia. The survival of acinar tumor cells is dependent on continued expression of PyMT. Our findings indicate that PyMT can induce exocrine tumors from pancreatic progenitor cells, but cells in the β cell lineage are not transdifferentiated toward exocrine cell types by PyMT; instead, they undergo oncogene-dependent hyperplastic growth, but do not require PyMT for survival.  相似文献   

8.
9.
10.
The identification of secreted factors that can selectively stimulate the generation of insulin producing β-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based β-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of β-cells during normal pancreatic development such putative factors may be identified. In the mouse, β-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of β-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when β-cells are generated. We also provide evidence that RA induces the generation of Ngn3+ endocrine progenitor cells and stimulates their further differentiation into β-cells by activating a program of cell differentiation that recapitulates the normal temporal program of β-cell differentiation.  相似文献   

11.
12.
Despite recent technical advances for studying lineage tracing and gene functions, our knowledge of pancreatic duct progenitor cells and mechanisms involved in their differentiation remains a huge void in our understanding of pancreatic development. A deeper insight into ductal differentiation is needed because ductal cells may harbor pancreatic stem/progenitor cells that could give rise to new islets. Also, since the most common pancreatic tumors form structures expressing ductal cell-specific markers, studies of ductal development may provide better markers for pancreatic tumor classification. One major longstanding problem in the study of pancreatic ductal differentiation has been the lack of an effective in vitro model. We thus wished to develop an in vitro system for the study of pancreatic duct development. In doing so, we have developed a specific culture condition to promote ductal differentiation of E11.5 pancreatic rudiments. Normally, pancreatic explants cultured in vitro develop to form endocrine, acinar, as well as ductal cells. Here, we report that addition of a combination of EGF, fibroblast growth factor-10, and platelet-derived growth factor-AA to the explant cultures promotes ductal differentiation, while preventing endocrine and acinar differentiation. This culture system for differentiation and enrichment of pancreatic ductal cells may allow identification of gene(s) involved in ductal development.  相似文献   

13.
Recently, it was demonstrated that pancreatic new-born glucagon-producing cells can regenerate and convert into insulin-producing β-like cells through the ectopic expression of a single gene, Pax4. Here, combining conditional loss-of-function and lineage tracing approaches, we show that the selective inhibition of the Arx gene in α-cells is sufficient to promote the conversion of adult α-cells into β-like cells at any age. Interestingly, this conversion induces the continuous mobilization of duct-lining precursor cells to adopt an endocrine cell fate, the glucagon+ cells thereby generated being subsequently converted into β-like cells upon Arx inhibition. Of interest, through the generation and analysis of Arx and Pax4 conditional double-mutants, we provide evidence that Pax4 is dispensable for these regeneration processes, indicating that Arx represents the main trigger of α-cell-mediated β-like cell neogenesis. Importantly, the loss of Arx in α-cells is sufficient to regenerate a functional β-cell mass and thereby reverse diabetes following toxin-induced β-cell depletion. Our data therefore suggest that strategies aiming at inhibiting the expression of Arx, or its molecular targets/co-factors, may pave new avenues for the treatment of diabetes.  相似文献   

14.
15.
We previously showed that injury by partial duct ligation (PDL) in adult mouse pancreas activates Neurogenin 3 (Ngn3)+ progenitor cells that can differentiate to β cells ex vivo. Here we evaluate the role of Ngn3+ cells in β cell expansion in situ. PDL not only induced doubling of the β cell volume but also increased the total number of islets. β cells proliferated without extended delay (the so-called ‘refractory'' period), their proliferation potential was highest in small islets, and 86% of the β cell expansion was attributable to proliferation of pre-existing β cells. At sufficiently high Ngn3 expression level, upto 14% of all β cells and 40% of small islet β cells derived from non-β cells. Moreover, β cell proliferation was blunted by a selective ablation of Ngn3+ cells but not by conditional knockout of Ngn3 in pre-existing β cells supporting a key role for Ngn3+ insulin cells in β cell proliferation and expansion. We conclude that Ngn3+ cell-dependent proliferation of pre-existing and newly-formed β cells as well as reprogramming of non-β cells contribute to in vivo β cell expansion in the injured pancreas of adult mice.  相似文献   

16.
Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt‐agonistic R‐spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever‐expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1‐based cultures, and develop into budding cyst‐like structures (organoids) that expand five‐fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi‐potentiality.  相似文献   

17.
During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta cells from stem cells.  相似文献   

18.
The Notch-signaling pathway is known to be fundamental in controlling pancreas differentiation. We now report on using Cre-based fate mapping to indelibly label pancreatic Notch-responsive cells (PNCs) at larval stages and follow their fate in the adult pancreas. We show that the PNCs represent a population of progenitors that can differentiate to multiple lineages, including adult ductal cells, centroacinar cells (CACs) and endocrine cells. These endocrine cells include the insulin-producing β-cells. CACs are a functional component of the exocrine pancreas; however, our fate-mapping results indicate that CACs are more closely related to endocrine cells by lineage as they share a common progenitor. The majority of the exocrine pancreas consists of the secretory acinar cells; however, we only detect a very limited contribution of PNCs to acinar cells. To explain this observation we re-examined early events in pancreas formation. The pancreatic anlage that gives rise to the exocrine pancreas is located in the ventral gut endoderm (called the ventral bud). Ptf1a is a gene required for exocrine pancreas development and is first expressed as the ventral bud forms. We used transgenic marker lines to observe both the domain of cells expressing ptf1a and cells responding to Notch signaling. We do not detect any overlap in expression and demonstrate that the ventral bud consists of two cell populations: a ptf1-expressing domain and a Notch-responsive progenitor core. As pancreas organogenesis continues, the ventral bud derived PNCs align along the duct, remain multipotent and later in development differentiate to form secondary islets, ducts and CACs.  相似文献   

19.
Type I diabetes (T1D) is an autoimmune disease in which an immune response to pancreatic β-cells results in their loss over time. Although the conventional view is that this loss is due to autoimmune destruction, we present evidence of an additional phenomenon in which autoimmunity promotes islet endocrine cell transdifferentiation. The end result is a large excess of δ-cells, resulting from α- to β- to δ-cell transdifferentiation. Intermediates in the process of transdifferentiation were present in murine and human T1D. Here, we report that the peptide caerulein was sufficient in the context of severe β-cell deficiency to induce efficient induction of α- to β- to δ-cell transdifferentiation in a manner very similar to what occurred in T1D. This was demonstrated by genetic lineage tracing and time course analysis. Islet transdifferentiation proceeded in an islet autonomous manner, indicating the existence of a sensing mechanism that controls the transdifferentiation process within each islet. The finding of evidence for islet cell transdifferentiation in rodent and human T1D and its induction by a single peptide in a model of T1D has important implications for the development of β-cell regeneration therapies for diabetes.The response of a tissue to stress/injury can involve cell death and proliferation. However, it has become increasingly recognized that changes in cellular differentiation state can have an important role.1 In type I diabetes (T1D), the established view has been that the primary pathophysiological event is β-cell apoptosis due to a β-cell specific autoimmune response,2 leading to profound β-cell deficiency. Thus, there has been great interest in inducing β-cell neogenesis, but there has been controversy over how and even whether β-cell regeneration occurs.3Activation of dedicated stem/progenitor cells within the pancreas and transdifferentiation of other differentiated cell types to β-cells are two potential mechanisms. In the past, the prevailing paradigm has been that neogenesis proceeds by the activation of facultative β-cell stem/progenitors within pancreatic ducts.4, 5, 6, 7 However, more recent studies have not found evidence of robust β-cell neogenesis from ducts.8, 9, 10, 11 β-cell neogenesis from other cell types within the pancreas, including acinar12 and centroacinar13 cells has also been reported.Recently, we demonstrated robust β-cell neogenesis by transdifferentiation from preexisting α-cells in a model of T1D where severe β-cell deficiency was induced by high-dose alloxan.14, 15 In this model, β-cell neogenesis from α-cells was stimulated by pancreatic duct ligation (PDL).9, 15 Surgical reversal of PDL led to the recovery of β-cell mass and function by a combination of β-cell replication and β-cell neogenesis, demonstrating that β-cell regeneration by α- to β-cell neogenesis could be a robust approach to diabetes therapy,16 but PDL, which involves major surgery, is not a practical approach to therapy. Importantly, the relevance of α- to β-cell transdifferentiation to human biology remained unclear, as previous studies were performed in rodents.Here, we report the occurrence of efficient islet cell transdifferentiation using an entirely pharmacologically based approach where the peptide caerulein,17, 18 substituting for PDL, stimulated β-cell transdifferentiation from α-cells in mice rendered severely β-cell deficient by alloxan. Following caerulein plus alloxan, many of the neogenic β-cells went on to form δ-cells. In murine and human T1D, a similar process appeared to occur, where α-cells transdifferentiated into β-cells, which went on to form δ-cells. This led to a marked δ-cell excess in both murine and human T1D.The finding of endocrine cell transdifferentiation in T1D supports a new paradigm where β-cells, in addition to undergoing destruction by inflammatory mediators, undergo a dynamic process of neogenesis from α-cells and transdifferentiation to δ-cells. Controlling the neogenic process could lead to a new approach to diabetes therapy.  相似文献   

20.
The emergence of bihormonal (BH) cells expressing insulin and glucagon has been reported under diabetic conditions in humans and mice. Whereas lineage tracing studies demonstrated that glucagon-producing α cells can be reprogrammed into BH cells, the underlying dynamics of the conversion process remain poorly understood. In the present study, we investigated the identities of pancreatic endocrine cells by genetic lineage tracing under diabetic conditions. When β-cell ablation was induced by alloxan (ALX), a time-dependent increase in BH cells was subsequently observed. Lineage tracing experiments demonstrated that BH cells originate from α cells, but not from β cells, in ALX-induced diabetic mice. Notably, supplemental insulin administration into diabetic mice resulted in a significant increase in α-cell-derived insulin-producing cells that did not express glucagon. Furthermore, lineage tracing in Ins2Akita diabetic mice demonstrated a significant induction of α-to-β conversion. Thus, adult α cells have plasticity, which enables them to be reprogrammed into insulin-producing cells under diabetic conditions, and this can be modulated by supplemental insulin administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号