首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination.  相似文献   

2.
DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (DSB) repair and V(D)J recombination. We have isolated a new X-ray-sensitive CHO cell line, XR-C1, which is impaired in DSB repair and which was assigned to complementation group 7, the group that is defective in the XRCC7 / SCID ( Prkdc ) gene encoding the catalytic subunit of DNA-PK (DNA-PKcs). Consistent with this complementation analysis, XR-C1 cells lackeddetectable DNA-PKcs protein, did not display DNA-PK catalytic activity and were complemented by the introduction of a single human chromosome 8 (providing the Prkdc gene). The impact of the XR-C1 mutation on V(D)J recombination was quite different from that found in most rodent cells defective in DNA-PKcs, which are preferentially blocked in coding joint formation, whereas XR-C1 cells were defective in forming both coding and signal joints. These results suggest that DNA-PKcs is required for both coding and signal joint formation during V(D)J recombination and that the XR-C1 mutant cell line may prove to be a useful tool in understanding this pathway.  相似文献   

3.
The effort to elucidate the mechanism of V(D)J recombination has given rise to a dispute as to whether DNA-dependent protein kinase catalytic subunit (DNA-PKcs) contributes to signal joint formation (sjf). Observations reported to date are confusing. Analyses using DNA-PKcs-deficient cells could not conclude the requirement of DNA-PKcs for sjf, because sjf can be formed by end-joining activities which are diverse among cells other than those participating in V(D)J recombination. Here, we observed V(D)J recombination in DNA-PKcs knockout cells and showed that both signal and coding joint formation were clearly impaired in the cells. Subsequently, to directly demonstrate the requirement of DNA-PKcs for sjf, we introduced full-length cDNA of DNA-PKcs into the knockout cells. Furthermore, several mutant DNA-PKcs cDNA constructs designed from mutant cell lines (irs-20, V3, murine scid, and SX9) were also introduced into the cells to obtain further evidence indicating the involvement of DNA-PKcs in sjf. We found as a result that the full-length cDNA complemented the aberrant sjf and that the mutant cDNAs constructs also partially complemented it. Lastly, we looked at whether the kinase activity of DNA-PKcs is necessary for sjf and, as a result, demonstrated a close relationship between them. Our observations clearly indicate that the DNA-PKcs controls not only coding joint formation but also the sjf in V(D)J recombination through its kinase activity.  相似文献   

4.
During V(D)J recombination, the RAG1 and RAG2 proteins form a complex and initiate the process of rearrangement by cleaving between the coding and signal segments and generating hairpins at the coding ends. Prior to ligation of the coding ends by DNA ligase IV/XRCC4, these hairpins are opened by the ARTEMIS/DNA-PKcs complex. ARTEMIS, a member of the metallo-beta-lactamase superfamily, shares several features with other family members that act on nucleic acids. ARTEMIS exhibits exonuclease and, in concert with DNA-PKcs, endonuclease activities. To characterize amino acids essential for its catalytic activities, we mutated nine evolutionary conserved histidine and aspartic acid residues within ARTEMIS. Biochemical analyses and a novel in vivo V(D)J recombination assay allowed the identification of eight mutants that were defective in both overhang endonucleolytic and hairpin-opening activities; the 5' to 3' exonuclease activity of ARTEMIS, however, was not impaired by these mutations. These results indicate that the hairpin-opening activity of ARTEMIS and/or its overhang endonucleolytic activity are necessary but its exonuclease activity is not sufficient for the process of V(D)J recombination.  相似文献   

5.
RAG1 and RAG2 cleave DNA to generate blunt signal ends and hairpin coding ends at antigen receptor loci in lymphoid cells. During V(D)J recombination, repair of these RAG-generated double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway contributes substantially to the antigen receptor diversity necessary for immune system function, although recent evidence also supports the ability of RAG-generated breaks to undergo homology-directed repair (HDR). We have determined that RAG-generated chromosomal breaks can be repaired by pathways other than NHEJ in mouse embryonic stem (ES) cells, although repair by these pathways occurs at a significantly lower frequency than NHEJ. HDR frequency was estimated to be >or=40-fold lower than NHEJ frequency for both coding end and signal end reporters. Repair by single-strand annealing was estimated to occur at a comparable or lower frequency than HDR. As expected, V(D)J recombination was substantially impaired in cells deficient for the NHEJ components Ku70, XRCC4, and DNA-PKcs. Concomitant with decreased NHEJ, RAG-induced HDR was increased in each of the mutants, including cells lacking DNA-PKcs, which has been implicated in hairpin opening. HDR was increased to the largest extent in Ku70-/- cells, implicating the Ku70/80 DNA end-binding protein in regulating pathway choice. Thus, RAG-generated DSBs are typically repaired by the NHEJ pathway in ES cells, but in the absence of NHEJ components, a substantial fraction of breaks can be efficiently channeled into alternative pathways in these cells.  相似文献   

6.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

7.
We recently described the incidence of a SCID disease in a litter of Jack Russell terriers. In this study, we show that the molecular defect in these animals is faulty V(D)J recombination. Furthermore, we document a complete deficit in DNA-dependent protein kinase activity that can be explained by a marked diminution in the expression of the catalytic subunit DNA-dependent protein kinase catalytic subunit (DNA-PKcs). We conclude that as is the case in C.B-17 SCID mice and in Arabian SCID foals, the defective factor in these SCID puppies is DNA-PKcs. In mice, it has been clearly established that DNA-PKcs deficiency produces an incomplete block in V(D)J recombination, resulting in "leaky" coding joint formation and only a modest defect in signal end ligation. In contrast, DNA-PKcs deficiency in horses profoundly blocks both coding and signal end joining. Here, we show that although DNA-PKcs deficiency in canine lymphocytes results in a block in both coding and signal end joining, the deficit in both is intermediate between that seen in SCID mice and SCID foals. These data demonstrate significant species variation in the absolute necessity for DNA-PKcs during V(D)J recombination. Furthermore, the severity of the V(D)J recombination deficits in these three examples of genetic DNA-PKcs deficiency inversely correlates with the relative DNA-PK enzymatic activity expressed in normal fibroblasts derived from these three species.  相似文献   

8.
V(D)J recombination plays a prominent role in the generation of the antigen receptor repertoires of B and T lymphocytes. It is also likely to be involved in the formation of chromosomal translocations, some of which may result from interchromosomal recombination. We have investigated the potential of the V(D)J recombination machinery to perform intermolecular recombination between two plasmids, either unlinked or linked by catenation. In either case, recombination occurs in trans to yield signal and coding joints, and the results do not support the existence of a mechanistic block to the formation of coding joints in trans. Instead, we observe that linearization of the substrate, which does not alter the cis or trans status of the recombination signals, causes a specific and dramatic reduction in coding joint formation. This unexpected result leads us to propose a "release and recapture" model for V(D)J recombination in which coding ends are frequently released from the postcleavage complex and the efficiency of coding joint formation is influenced by the efficiency with which such ends are recaptured by the complex. This implies the existence of mechanisms, operative during recombination of chromosomal substrates, that act to prevent coding end release or to facilitate coding end recapture.  相似文献   

9.
V(D)J recombination assembles immunoglobulin (Ig) and T cell receptor (TCR) gene segments during lymphocyte development. Recombination is initiated by the RAG-1 and RAG-2 proteins, which introduce double-stranded DNA breaks (DSB) adjacent to the Ig and TCR gene segments. The broken ends are joined by the DSB repair machinery, which includes the XRCC4 protein. While XRCC4 is essential for both DSB repair and V(D)J recombination, the functions of this protein remain enigmatic. Because the rare V(D)J recombination products isolated from XRCC4-deficient cells generally show evidence of excessive nucleotide loss, it was hypothesized that XRCC4 may function to protect broken DNA ends. Here we report the first examination of V(D)J recombination intermediates in XRCC4-deficient cells. We found that both types of intermediates, signal ends and coding ends, are abundant in the absence of XRCC4. Furthermore, the signal ends are full length. We also showed that alternative V(D)J recombination products, hybrid joints, form with normal efficiency and without excessive deletion in XRCC4-deficient cells. These data indicate that impaired formation of V(D)J recombination products in XRCC4-deficient cells does not result from excessive degradation of recombination intermediates. Potential roles of XRCC4 in the joining reaction are discussed.  相似文献   

10.
The assembly of antigen receptor genes by V(D)J recombination is initiated by the RAG1/RAG2 protein complex, which introduces double-strand breaks between recombination signal sequences and their coding DNA. Truncated forms of RAG1 and RAG2 are functional in vivo and have been used to study V(D)J cleavage, hybrid joint formation and transposition in vitro. Here we have characterized the activities of the full-length proteins. Unlike core RAG2, which supports robust transposition in vitro, full-length RAG2 blocks transposition of signal ends following V(D)J cleavage. Thus, one role of this non-catalytic domain may be to prevent transposition in developing lymphoid cells. Although full-length RAG1 and RAG2 proteins rarely form hybrid joints in vivo in the absence of non-homologous end-joining factors, we show that the full-length proteins alone can catalyze this reaction in vitro.  相似文献   

11.
The V(D)J recombinase recognizes a pair of immunoglobulin or T-cell receptor gene segments flanked by recombination signal sequences and introduces double-strand breaks, generating two signal ends and two coding ends. Broken coding ends were initially identified as covalently closed hairpin DNA molecules. Before recombination, however, the hairpins must be opened and the ends must be modified by nuclease digestion and N-region addition. We have now analyzed nonhairpin coding ends associated with various immunoglobulin gene segments in cells undergoing V(D)J recombination. We found that these broken DNA ends have different nonrandom 5′-strand deletions which were characteristic for each locus examined. These deletions correlate well with the sequence characteristics of coding joints involving these gene segments. In addition, unlike broken signal ends, these nonhairpin coding-end V(D)J recombination reaction intermediates have 3′ overhanging ends. We discuss the implications of these results for models of how sequence modifications occur during coding-joint formation.  相似文献   

12.
Raghavan SC  Tong J  Lieber MR 《DNA Repair》2006,5(2):278-285
In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining.  相似文献   

13.
V(D)J recombination has been examined in several X-ray-sensitive and double-strand break repair-deficient Chinese hamster cell mutants. Signal joint formation was affected in four mutants (xrs 5, XR-1, V-3, and XR-V9B cells, representing complementation groups 1 through 4, respectively) defective in DNA double-strand break rejoining. Among these four, V-3 and XR-V9B were the most severely affected. Only in V-3 was coding joint formation also affected. Ataxia telangiectasia-like hamster cell mutants (V-E5 and V-G8), which are normal for double-strand break repair but are X ray sensitive, were normal for all aspects of the V(D)J recombination reaction, indicating that X-ray sensitivity is not the common denominator but that the deficiency in double-strand break repair appears to be. The abnormality at the signal joints consisted of an elevated incidence of nucleotide loss from each of the two signal ends. Interestingly, in complementation groups 1 (xrs 5) and 2 (XR-1), signal joint formation was within the normal range under some transfection conditions. This suggests that the affected gene products in these two complementation groups are not catalytic components. Instead, they may be either secondary or stochiometric components involved in the later stages of both the V(D)J recombination reaction and double-strand break repair. The fact that such factors can affect the precision of the signal joint has mechanistic implications for V(D)J recombination.  相似文献   

14.
Pre-B and pre-T cell lines from mutant mice with severe combined immune deficiency (scid mice) were transfected with plasmids that contained recombination signal sequences of antigen receptor gene elements (V, D, and J). Recovered plasmids were tested for possible recombination of signal sequences and/or the adjacent (coding) sequences. Signal ends were joined, but recombination was abnormal in that half of the recombinants had lost nucleotides from one or both signals. Coding ends were not joined at all in either deletional or inversional V(D)J recombination reactions. However, coding ends were able to participate in alternative reactions. The failure of coding joint formation in scid pre-B and pre-T cells appears sufficient to explain the absence of immunoglobulin or T cell receptor production in scid mice.  相似文献   

15.
V(D)J recombination proceeds in two stages. Precise cleavage at the border of the conserved recombination signal sequences (RSSs) and the coding ends results in flush double-stranded signal ends and coding ends terminating in hairpins. In the second stage, the signal and coding ends are processed into signal and coding joints. Coding ends containing certain nucleotide homopolymers affect the efficiency of V(D)J recombination. In this study, we have tested the effect of small changes in coding-end nucleotide composition on the frequency of coding- and signal joint formation. Furthermore, we have determined the sequences of coding joints resulting from recombination of coding ends with different compositions. We found that the presence of two T nucleotides 5' of both RSSs, but not a single T, reduces the frequency of signal joint formation, i.e., interferes with the cleavage stage of V(D)J recombination. However, coding-joint processing is sensitive even to a single T. Both the sequence of the coding ends and the particular RSS (12-mer or 23-mer) with which the coding end is associated affect the final composition of the coding joints. Thus, the presence of P nucleotides, the conservation of one undeleted coding end, the formation of joints without any deletions, and the template-dependent insertion of nucleotides are strongly influenced by the coding-end nucleotide composition and/or RSS association. The implications of these results with respect to the processing of coding ends are discussed.  相似文献   

16.
V(D)J recombination is one of the most complex DNA transactions in biology. The RAG complex makes double-stranded breaks adjacent to signal sequences and creates hairpin coding ends. Here, we find that the kinase activity of the Artemis:DNA-PKcs complex can be activated by hairpin DNA ends in cis, thereby allowing the hairpins to be nicked and then to undergo processing and joining by nonhomologous DNA end joining. Based on these insights, we have reconstituted many aspects of the antigen receptor diversification of V(D)J recombination by using 13 highly purified polypeptides, thereby permitting variable domain exon assembly by using this fully defined system in accord with the 12/23 rule for this process. The features of the recombination sites created by this system include all of the features observed in vivo (nucleolytic resection, P nucleotides, and N nucleotide addition), indicating that most, if not all, of the end modification enzymes have been identified.  相似文献   

17.
We examined a series of extrachromosomal DNA substrates for V(D)J recombination under replicating and nonreplicating conditions. Complete and partial replications were examined by monitoring the loss of prokaryote-specific adenine methylation at 14 to 22 MboI-DpnI restriction sites (GATC) on the substrates. Some of these sites are within 2 bases of the signal sequence ends. We found that neither coding joint nor signal joint formation requires substrate replication. After ruling out replication as a substrate requirement, we determined whether replication had any effect on the efficiency of V(D)J recombination. Quantitation of V(D)J recombination efficiency on nonreplicating substrates requires some method of monitoring the entry of substrate molecules into the cells. We devised such a method by monitoring DNA repair of substrates into which we had substituted deoxyuridine for 10 to 20% of the thymidine nucleotides in the DNA. The substrates which enter the lymphoid cells were repaired efficiently in vivo by the eukaryotic uracil DNA repair system. Upon plasmid harvest, we distinguished repaired (entered) from unrepaired (not entered) plasmids by cleaving unrepaired molecules with uracil DNA glycoylase and Escherichia coli endonuclease IV in vitro. This method of monitoring DNA entry does not appear to underestimate or overestimate the amount of DNA entry. By using this method, we found no significant quantitative effect of DNA replication on V(D)J recombination efficiency.  相似文献   

18.
The DNA-dependent protein kinase (DNA-PK) complex plays a key role in DNA double-strand break (DSB) repair and V(D)J recombination. Using a genetic approach we have isolated cell mutants sensitive to ionizing radiation (IR) in the hope of elucidating the mechanism and components required for these pathways. We describe here, an X-ray-sensitive and DSB repair defective Chinese hamster ovary (CHO) cell line, XR-C2, which was assigned to the X-Ray Cross Complementation (XRCC) group 7. This group of mutants is defective in the XRCC7/SCID/Prkdc gene, which encodes the catalytic subunit of DNA-PK (DNA-PKcs). Despite the fact that XR-C2 cells expressed normal levels of DNA-PKcs protein, no DNA-PK catalytic activity could be observed in XR-C2, confirming the genetic analyses that these cells harbor a dysfunctional gene for DNA-PKcs. In contrast to other IR group 7 mutants, which contain undetectable or low levels of DNA-PKcs protein and which show a severe defect in V(D)J recombination, XR-C2 cells manifested only a mild defect in both coding and signal junction formation. The unique phenotype of the XR-C2 mutant suggests that a normal level of kinase activity is critical for radiation resistance but not for V(D)J recombination, whereas the overall structure of the DNA-PKcs protein appears to be of great importance for this process.  相似文献   

19.
V(D)J recombination events are initiated by cleavage at gene segments by the RAG1:RAG2 complex, which results in hairpin formation at the coding ends. The hairpins are opened by the Artemis:DNA-PKcs complex, and then joined via the nonhomologous DNA end joining (NHEJ) process. Here we examine the opening of the hairpinned coding ends from all of the 39 functional human VH elements. We find that there is some sequence-dependent variation in the efficiency and even the position of hairpin opening by Artemis:DNA-PKcs. The hairpin opening efficiency varies over a 7-fold range. The hairpin opening position varies over the region from 1 to 4 nt 3′ of the hairpin tip, leading to a 2–8 nt single-stranded 3′ overhang at each coding end. This information provides greater clarity on the extent to which the hairpin opening position contributes to junctional diversification in V(D)J recombination.  相似文献   

20.
Ku, a heterodimer of 70- and 86-kDa subunits, serves as the DNA binding component of the DNA-dependent protein kinase (DNA-PK). Cells deficient for the 86-kDa subunit of Ku (Ku86-deficient cells) lack Ku DNA end-binding activity and are severely defective for formation of the standard V(D)J recombination products, i.e., signal and coding joints. It has been widely hypothesized that Ku is required for protection of broken DNA ends generated during V(D)J recombination. Here we report the first analysis of V(D)J recombination intermediates in a Ku-deficient cell line. We find that full-length, ligatable signal ends are abundant in these cells. These data show that Ku86 is not required for the protection or stabilization of signal ends, suggesting that other proteins may perform this function. The presence of high levels of signal ends in Ku-deficient cells prompted us to investigate whether these ends could participate in joining reactions. We show that nonstandard V(D)J recombination products (hybrid joints), which involve joining a signal end to a coding end, form with similar efficiencies in Ku-deficient and wild-type fibroblasts. These data support the surprising conclusion that Ku is not required for some types of V(D)J joining events. We propose a novel RAG-mediated joining mechanism, analogous to disintegration reactions performed by retroviral integrases, to explain how formation of hybrid joints can bypass the requirement for Ku and DNA-PK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号