首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(7):862-869
The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of “integrative genomics” in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.  相似文献   

2.
Autism spectrum disorder(ASD) is a spectral neurodevelopment disorder affecting approximately 1% of the population. ASD is characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Multiple factors, including genetic/genomic, epigenetic/epigenomic and environmental, are thought to be necessary for autism development. Recent reviews have provided further insight into the genetic/genomic basis of ASD. It has long been suspected that epigenetic mechanisms, including DNA methylation, chromatin structures and long non-coding RNAs may play important roles in the pathology of ASD. In addition to genetic/genomic alterations and epigenetic/epigenomic influences, environmental exposures have been widely accepted as an important role in autism etiology, among which immune dysregulation and gastrointestinal microbiota are two prominent ones.  相似文献   

3.
Experimental studies demonstrated that maternal exposure to certain environmental and dietary factors during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism by which maternal nutrients affect the phenotype of their offspring in both honeybee and agouti mouse models. Phenotypic changes through DNA methylation can be linked to folate metabolism by the knowledge that folate, a coenzyme of one-carbon metabolism, is directly involved in methyl group transfer for DNA methylation. During the fetal period, organ-specific DNA methylation patterns are established through epigenetic reprogramming. However, established DNA methylation patterns are not immutable and can be modified during our lifetime by the environment. Aberrant changes in DNA methylation with diet may lead to the development of age-associated diseases including cancer. It is also known that the aging process by itself is accompanied by alterations in DNA methylation. Diminished activity of DNA methyltransferases (Dnmts) can be a potential mechanism for the decreased genomic DNA methylation during aging, along with reduced folate intake and altered folate metabolism. Progressive hypermethylation in promoter regions of certain genes is observed throughout aging, and repression of tumor suppressors induced by this epigenetic mechanism appears to be associated with cancer development. In this review, we address the effect of folate on early development and aging through an epigenetic mechanism, DNA methylation.  相似文献   

4.
The intrauterine environment has the potential to “program” the developing fetus in a way that can be potentially deleterious to later health. While in utero environmental/stochastic factors are known to influence DNA methylation profile at birth, it has been difficult to assign specific examples of epigenetic variation to specific environmental exposures. Recently, several studies have linked exposure to smoking with DNA methylation change in the aryl hydrocarbon receptor repressor (AHRR) gene in blood. This includes hypomethylation of AHRR in neonatal blood in response to maternal smoking in pregnancy. The role of AHRR as a negative regulator of pathways involved in pleiotropic responses to environmental contaminants raises the possibility that smoking-induced hypomethylation is an adaptive response to an adverse in utero environmental exposure. However, the tissue specificity of the response to maternal smoking, and the stability of the methylation changes early in life remain to be determined. In this study we analyzed AHRR methylation in three cell types—cord blood mononuclear cells (CBMCs), buccal epithelium, and placenta tissue—from newborn twins of mothers who smoked throughout pregnancy and matched controls. Further, we explored the postnatal stability of this change at 18 months. Our results confirm the previous association between maternal smoking and AHRR methylation in neonatal blood. In addition, this study expands the region of AHRR methylation altered in response to maternal smoking during pregnancy and reveals the tissue-specific nature of epigenetic responses to environmental exposures in utero. Further, the evidence for postnatal stability of smoking-induced epigenetic change supports a role for epigenetics as a mediator of long-term effects of specific in utero exposures in humans. Longitudinal analysis of further specific exposures in larger cohorts is required to examine the extent of this phenomenon in humans.  相似文献   

5.
The developmental origins of adult health and disease (DOHaD) hypothesis that argues for a causal relationship between under-nutrition during early life and increased risk for a range of diseases in adulthood is gaining epidemiological support. One potential mechanism mediating these effects is the modulation of epigenetic markings, specifically DNA methylation. Since folate is an important methyl donor, alterations in supply of this micronutrient may influence the availability of methyl groups for DNA methylation. We hypothesised that low folate supply in utero and post-weaning would alter the DNA methylation profile of offspring. In two separate 2 × 2 factorial designed experiments, female C57Bl6/J mice were fed low- or control/high-folate diets during mating, and through pregnancy and lactation. Offspring were weaned on to either low- or control/high-folate diets, resulting in 4 treatment groups/experiment. Genomic DNA methylation was measured in the small intestine (SI) of 100-day-old offspring. In both experiments, SI genomic DNA from offspring of low-folate-fed dams was significantly hypomethylated compared with the corresponding control/high folate group (P = 0.009/P = 0.006, respectively). Post-weaning folate supply did not affect SI genomic DNA methylation significantly. These observations demonstrate that early life folate depletion affects epigenetic markings, that this effect is not modulated by post-weaning folate supply and that altered epigenetic marks persist into adulthood.  相似文献   

6.
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.  相似文献   

7.
《Epigenetics》2013,8(2):195-201
Aberrant DNA methylation is a major epigenetic mechanism of gene silencing in a wide range of human cancers. Previous studies on DNA methylation typically used paired tumor and normal-appearing surrounding tissues from cancer-bearing individuals. However, genomic DNA isolated from surrogate tissues such as blood cells represents an attractive material that can be exploited in the discovery of biomarkers of exposure and tumorigenesis. Here we examined the association between lung cancer and DNA methylation patterns in a panel of candidate genes. We also investigated whether blood levels of vitamin metabolites modify DNA methylation levels in blood cells. To this end, we quantitatively determined DNA methylation levels in blood cells of nested cases and controls from a prospective study with well defined dietary habits and lifestyles. Multiple CpG sites in five genes (CDKN2A/p16, RASSF1A, GSTP1, MTHFR, and MGMT) that are frequent targets of hypermethylation in a variety of human malignancies were included in the analysis. While no clear association between DNA methylation patterns and the case/control status was found, with the exception of RASSF1A hypermethylation, methylation level changed according to serum levels of 1-carbon metabolites and vitamins B. Overall, folate was associated with increased methylation levels of RASSF1A and MTHFR and methionine was associated with decreased methylation levels of RASSF1A. The associations with folate were more pronounced among never smokers while the associations with methionine were more evident among ever-smokers. These results are consistent with the notion that blood levels of 1-carbon metabolism markers and dietary/lifestyle factors may modify DNA methylation levels in blood cells and that blood cells can be exploited for the discovery of epigenetic biomarkers of exposures, providing proof-of-principle on the use of blood samples in the context of prospective studies.  相似文献   

8.
9.

Background

Solid tumors, including head and neck squamous cell carcinomas (HNSCC), arise as a result of genetic and epigenetic alterations in a sustained stress environment. Little work has been done that simultaneously examines the spectrum of both types of changes in human tumors on a genome-wide scale and results so far have been limited and mixed. Since it has been hypothesized that epigenetic alterations may act by providing the second carcinogenic hit in gene silencing, we sought to identify genome-wide DNA copy number alterations and CpG dinucleotide methylation events and examine the global/local relationships between these types of alterations in HNSCC.

Methodology/Principal Findings

We have extended a prior analysis of 1,413 cancer-associated loci for epigenetic changes in HNSCC by integrating DNA copy number alterations, measured at 500,000 polymorphic loci, in a case series of 19 primary HNSCC tumors. We have previously demonstrated that local copy number does not bias methylation measurements in this array platform. Importantly, we found that the global pattern of copy number alterations in these tumors was significantly associated with tumor methylation profiles (p<0.002). However at the local level, gene promoter regions did not exhibit a correlation between copy number and methylation (lowest q = 0.3), and the spectrum of genes affected by each type of alteration was unique.

Conclusion/Significance

This work, using a novel and robust statistical approach demonstrates that, although a “second hit” mechanism is not likely the predominant mode of action for epigenetic dysregulation in cancer, the patterns of methylation events are associated with the patterns of allele loss. Our work further highlights the utility of integrative genomics approaches in exploring the driving somatic alterations in solid tumors.  相似文献   

10.
Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.  相似文献   

11.
DNA methylation in eukaryotes invokes heritable alterations of the of the cytosine base in DNA without changing the underlying genomic DNA sequence. DNA methylation may be modified by environmental exposures as well as gene polymorphisms and may be a mechanistic link between environmental risk factors and the development of disease. In this review, we consider the role of DNA methylation in bone cells (osteoclasts/osteoblasts/osteocytes) and their progenitors with special focus on in vitro and ex vivo analyses. The number of studies on DNA methylation in bone cells is still somewhat limited, nevertheless it is getting increasingly clear that this type of the epigenetic changes is a critical regulator of gene expression. DNA methylation is necessary for proper development and function of bone cells and is accompanied by disease characteristic functional alterations as presently reviewed including postmenopausal osteoporosis and mechanical strain.  相似文献   

12.
Epigenetic events are crucial for early development, but can be influenced by environmental factors, potentially programming the genome for later adverse health outcomes. The insulin-like growth factor 2 (IGF2)/H19 locus is crucial for prenatal growth and the epigenetic state at this locus is environmentally labile. Recent studies have implicated maternal factors, including folate intake and smoking, in the regulation of DNA methylation at this locus, although data are often conflicting in the direction and magnitude of effect. Most studies have focused on single tissues and on one or two differentially-methylated regions (DMRs) regulating IGF2/H19 expression. In this study, we investigated the relationship between multiple shared and non-shared gestational/maternal factors and DNA methylation at four IGF2/H19 DMRs in five newborn cell types from 67 pairs of monozygotic and 49 pairs of dizygotic twins. Data on maternal and non-shared supply line factors were collected during the second and third trimesters of pregnancy and DNA methylation was measured via mass spectrometry using Sequenom MassArray EpiTyper analysis. Our exploratory approach showed that the site of umbilical cord insertion into the placenta in monochorionic twins has the strongest positive association with methylation in all IGF2/H19 DMRs (p < 0.05). Further, evidence for tissue- and locus-specific effects were observed, emphasizing that responsiveness to environmental exposures in utero cannot be generalized across genes and tissues, potentially accounting for the lack of consistency in previous findings. Such complexity in responsiveness to environmental exposures in utero has implications for all epigenetic studies investigating the developmental origins of health and disease.  相似文献   

13.
14.
15.
16.
《Epigenetics》2013,8(6):606-614
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.  相似文献   

17.
18.
Endometrial cancer is the most commonly diagnosed gynecological cancer, and it has been shown to be a complex disease driven by abnormal genetic and epigenetic alterations, as well as environmental factors. Epigenetic changes resulting in aberrant gene expression are dynamic and modifiable features of many cancer types. A significant epigenetic change is aberrant DNA methylation. In this review, we review evidence on the role of aberrant DNA methylation, examining changes in relation to endometrial carcinogenesis, and report on recent advances in the understanding of the contribution of aberrant DNA methylation to endometrial cancer with the emphasis on the role of dietary/lifestyle and environmental factors, as well as opportunities and challenges of DNA methylation in endometrial cancer management and prevention.Key words: DNA methylation, endometrial cancer, epidemiology  相似文献   

19.
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a ‘causal’ role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.  相似文献   

20.
Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号