首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Caveolin proteins are structural components of caveolae and are involved in the regulation of many biological processes. Recent studies have shown that caveolin-1 modulates inflammatory responses and is important for sepsis development. In the present study, we show that caveolin-1 and caveolin-2 have opposite roles in lipopolysaccharide (LPS)-induced sepsis using caveolin-deficient (Cav-1-/- and Cav-2-/-) mice for each of these proteins. While Cav-1-/- mice displayed delayed mortality following challenge with LPS, Cav-2-/- mice were more sensitive to LPS compared to wild-type (WT). With Cav-2-/- mice, this effect was associated with increased intestinal injury and increased intestinal permeability. This negative outcome was also correlated with enhanced expression of iNOS in epithelial intestinal cells, and enhanced production of nitric oxide (NO). By contrast, Cav-1-/- mice demonstrated a decrease in iNOS expression with decreased NO production, but no alteration in intestinal permeability. The differential expression of iNOS was associated with a significant increase of STAT-1 activation in these mice. Intestinal cells of Cav-2-/- mice showed increased phosphorylation of STAT-1 at tyrosine 701 compared to wild-type. However, Cav-1-/- mice-derived intestinal cells showed decreased levels of phosphorylation of STAT-1 at tyrosine 701. Since caveolin-2 is almost completely absent in Cav-1-/- mice, we conclude that it is not just the absence of caveolin-2 that is responsible for the observed effects, but that the balance between caveolin-1 and caveolin-2 is important for iNOS expression and ultimately for sepsis outcome.  相似文献   

2.
Caveolin-2 is a member of the caveolin gene family with no known function. Although caveolin-2 is coexpressed and heterooligomerizes with caveolin-1 in many cell types (most notably adipocytes and endothelial cells), caveolin-2 has traditionally been considered the dispensable structural partner of the widely studied caveolin-1. We now directly address the functional significance of caveolin-2 by genetically targeting the caveolin-2 locus (Cav-2) in mice. In the absence of caveolin-2 protein expression, caveolae still form and caveolin-1 maintains its localization in plasma membrane caveolae, although in certain tissues caveolin-1 is partially destabilized and shows modestly diminished protein levels. Despite an intact caveolar membrane system, the Cav-2-null lung parenchyma shows hypercellularity, with thickened alveolar septa and an increase in the number of endothelial cells. As a result of these pathological changes, these Cav-2-null mice are markedly exercise intolerant. Interestingly, these Cav-2-null phenotypes are identical to the ones we and others have recently reported for Cav-1-null mice. As caveolin-2 expression is also severely reduced in Cav-1-null mice, we conclude that caveolin-2 deficiency is the clear culprit in this lung disorder. Our analysis of several different phenotypes observed in caveolin-1-deficient mice (i.e., abnormal vascular responses and altered lipid homeostasis) reveals that Cav-2-null mice do not show any of these other phenotypes, indicating a selective role for caveolin-2 in lung function. Taken together, our data show for the first time a specific role for caveolin-2 in mammalian physiology independent of caveolin-1.  相似文献   

3.
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is one of several kinases activated through direct phosphorylation by p38 mitogen-activated protein kinase. MK2 regulates LPS-induced TNF mRNA translation, and targeted mutation of the MK2 gene renders mice more resistant to D-galactosamine plus LPS-induced liver damage. In the present study, we investigated the role of MK2 in immune defense against Listeria monocytogenes infection. MK2-deficient mice displayed diminished resistance to L. monocytogenes due to impaired control of bacterial growth. The increase in bacterial load in MK2(-/-) mice was associated with normal levels of IL-1 beta, IL-6, and IFN-gamma, whereas TNF production was strongly attenuated. In line, MK2-deficient bone marrow-derived macrophages showed impaired release of TNF, but not of IL-1 beta, in response to various bacterial stimuli in addition to decreased phagocytosis of fluorescence-labeled bacteria. Furthermore, spleen cells from MK2(-/-) mice displayed diminished IFN-gamma synthesis after stimulation with L. monocytogenes. In contrast, MK2 deficiency had no effect on macrophage generation of NO or on oxidative burst activity in response to L. moocytogenes. These results indicate an essential role of MK2 in host defense against intracellular bacteria probably via regulation of TNF and IFN-gamma production required for activation of antibacterial effector mechanisms.  相似文献   

4.
Caveolae organelles and caveolin-1 protein expression are most abundant in adipocytes and endothelial cells. Our initial report on mice lacking caveolin-1 (Cav-1) demonstrated a loss of caveolae and perturbations in endothelial cell function. More recently, however, observation of the Cav-1-deficient cohorts into old age revealed significantly lower body weights, as compared with wild-type controls. These results suggest that Cav-1 null mice may have problems with lipid metabolism and/or adipocyte functioning. To test this hypothesis directly, we placed a cohort of wild-type and Cav-1 null mice on a high fat diet. Interestingly, despite being hyperphagic, Cav-1 null mice show overt resistance to diet-induced obesity. As predicted, adipocytes from Cav-1 null null mice lack caveolae membranes. Early on, a lack of caveolin-1 selectively affects only the female mammary gland fat pad and results in a near complete ablation of the hypo-dermal fat layer. There are also indications of generalized adipose tissue pathology. With increasing age, a systemic decompensation in lipid accumulation occurs resulting in dramatically smaller fat pads, histologically reduced adipocyte cell diameter, and a poorly differentiated/hypercellular white adipose parenchyma. To gain mechanistic insights into this phenotype, we show that, although serum insulin, glucose, and cholesterol levels are entirely normal, Cav-1 null mice have severely elevated triglyceride and free fatty acid levels, especially in the post-prandial state. However, this build-up of triglyceride-rich chylomicrons/very low density lipoproteins is not due to perturbed lipoprotein lipase activity, a major culprit of isolated hypertriglyceridemia. The lean body phenotype and metabolic defects observed in Cav-1 null mice are consistent with the previously proposed functions of caveolin-1 and caveolae in adipocytes. Our results show for the first time a clear role for caveolins in systemic lipid homeostasis in vivo and place caveolin-1/caveolae as major factors in hyperlipidemias and obesity.  相似文献   

5.
It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.  相似文献   

6.
In Kinetoplastida, trypanothione and trypanothione reductase (TRYR) provide an intracellular reducing environment, substituting for the glutathione-glutathione reductase system found in most other organisms. To investigate the physiological role of TRYR in Trypanosoma brucei, we generated cells containing just one trypanothione reductase gene, TRYR, which was under the control of a tetracycline-inducible promoter. This enabled us to regulate TRYR activity in the cells from less than 1% to 400% of wild-type levels by adjusting the concentration of added tetracycline. In normal growth medium (which contains reducing agents), trypanosomes containing less than 10% of wild-type enzyme activity were unable to grow, although the levels of reduced trypanothione and total thiols remained constant. In media lacking reducing agents, hypersensitivity towards hydrogen peroxide (EC50 = 3.5 microM) was observed compared with the wild type (EC50 = 223 microM). The depletion of TRYR had no effect on susceptibility to melarsen oxide. The infectivity and virulence of the parasites in mice was dependent upon tetracycline-regulated TRYR activity: if the trypanosomes were injected into mice in the absence of tetracycline, no infection was detectable; and when tetracycline was withdrawn from previously infected animals, the parasitaemia was suppressed.  相似文献   

7.
Inflammation is a localized, protective response to trauma or microbial invasion that destroys the injurious agent and the injured tissue. Neutrophil elastase (NE), a serine protease stored in the azurophil granules of polymorphonuclear neutrophils, digests microbes after phagocytosis. NE can also digest microbes extracellularly but is associated with tissue damage and inflammatory disease. In this study, we show that polymorphonuclear neutrophils from mice deficient in serine protease inhibitor 6, a weak intracellular NE inhibitor, had increased susceptibility to self-inflicted lysis because of increased NE activity. The resulting transient increase in local extracellular NE activity was within a narrow range that resulted in the clearance of Pseudomonas aeruginosa but did not damage the lung. Therefore, deficiency in a weak intracellular inhibitor of NE results in an acute inflammatory response that protects from P. aeruginosa but does not cause lung disease.  相似文献   

8.
11beta-Hydroxysteroid dehydrogenase type 1 (11betaHSD1) performs end-organ metabolism of glucocorticoids (GCs) by catalyzing the conversion of C(11)-keto-GCs to C(11)-hydroxy-GCs, thereby generating activating ligands for the GC receptor. In this study, we report that 11betaHSD1(-/-) mice are more susceptible to endotoxemia, evidenced by increased weight loss and serum TNF-alpha, IL-6, and IL-12p40 levels following LPS challenge in vivo. Peritoneal and splenic macrophage (splnMphi) from these genetically altered mice overproduce inflammatory cytokines following LPS stimulation in vitro. Inflammatory cytokine overexpression by 11betaHSD1(-/-) splnMphi results from an increased activation of NF-kappaB- and MAPK-signaling cascades and an attenuated PI3K-dependent Akt activation. The expression of SHIP1 is augmented in 11betaHSD1(-/-) Mphi and contributes to inflammatory cytokine production because overexpression of SHIP1 in primary bone marrow Mphi (BMMphi) leads to a similar type of hyperresponsiveness to subsequent LPS stimulation. 11betaHSD1(+/+) and 11betaHSD1(-/-) BMMphi responded to LPS similarly. However, 11betaHSD1(-/-) BMMphi derived in the presence of elevated GC levels up-regulated SHIP1 expression and increased their capacity to produce inflammatory cytokines following their activation with LPS. These observations suggest the hyperresponsiveness of 11betaHSD1(-/-) splnMphi results from myeloid cell differentiation in the presence of moderately elevated GC levels found within 11betaHSD1(-/-) mice. GC-conditioning of BMMphi enhanced SHIP1 expression via up-regulation of bioactive TGF-beta. Consistently, TGF-beta protein expression was increased in unstimulated CD11b(-) cells residing in the BM and spleen of 11betaHSD1(-/-) mice. Our results suggest that modest elevations in plasma GC levels can modify the LPS responsiveness of Mphi by augmenting SHIP1 expression through a TGF-beta-dependent mechanism.  相似文献   

9.
10.
We previously showed that ablation of caveolin-1 (Cav-1) gene expression in mice promotes neointimal hyperplasia in vivo, a phenomenon normally characterized by smooth muscle cell (SMC) migration and proliferation. Whether these defects are cell autonomous, i.e., due to loss of Cav-1 within SMCs or loss of Cav-1 expression in other adjacent cell types in vivo, remains unknown. Cav-1 has been shown to associate with receptors for many vasoactive factors on the SMC surface. Therefore, Cav-1 might be an important regulator of SMC proliferation, migration, and signal transduction. To mechanistically dissect the role of Cav-1 in SMC signaling, we isolated SMCs from the aortas (AoSMCs) of Cav-1-deficient (Cav-1(-/-)) mice and characterized these cells with respect to their proliferation, migration, and Ca(2+) response to an important vasoactive factor, endothelin-1 (ET-1). 5-Bromo-2'-deoxyuridine incorporation and a wound-healing assay showed an increase in proliferation and migration rates in Cav-1(-/-) compared with wild-type (Cav-1(+/+)) AoSMCs. Cav-1(-/-) AoSMCs demonstrated upregulation of phosphorylated ERK1/2, cyclin D1, and proliferating cell nuclear antigen and reduced expression of the cyclin-dependent kinase inhibitor p27(Kip1). The Ca(2+) response was examined in the presence of ET-1 and assessed by confocal microscopy with the Ca(2+)-sensitive fluorescent probe fluo 3. When treated with ET-1, Cav-1(-/-) AoSMCs exhibited a faster and larger increase in free intracellular Ca(2+) than Cav-1(+/+) cells. The ET-1-induced response in Cav-1(-/-) cells was mediated by the ET(B) receptor, as shown using the ET(B) receptor antagonist BQ-788 and the ET(A) receptor antagonist BQ-123. In Cav-1(-/-) cells, ET(A) receptor expression was reduced and ET(B) receptor expression was upregulated. Therefore, Cav-1 ablation increased the ET-1-induced Ca(2+) response in SMCs by altering the type and expression level of the ET receptor (i.e., receptor isoform switching). These data suggest a novel regulatory role for Cav-1 in SMCs with respect to their proliferation, migration, and Ca(2+)-mediated signaling.  相似文献   

11.
Caveolin-1 null (-/-) mice show dramatic reductions in life span   总被引:7,自引:0,他引:7  
Caveolae are 50-100 nm flask-shaped invaginations of the plasma membrane found in most cell types. Caveolin-1 is the principal protein component of caveolae membranes in nonmuscle cells. The recent development of Cav-1-deficient mice has allowed investigators to study the in vivo functional role of caveolae in the context of a whole animal model, as these mice lack morphologically detectable caveolae membrane domains. Surprisingly, Cav-1 null mice are both viable and fertile. However, it remains unknown whether loss of caveolin-1 significantly affects the overall life span of these animals. To quantitatively determine whether loss of Cav-1 gene expression confers any survival disadvantages with increasing age, we generated a large cohort of mice (n = 180), consisting of Cav-1 wild-type (+/+) (n = 53), Cav-1 heterozygous (+/-) (n = 70), and Cav-1 knockout (-/-) (n = 57) animals, and monitored their long-term survival over a 2 year period. Here, we show that Cav-1 null (-/-) mice exhibit an approximately 50% reduction in life span, with major declines in viability occurring between 27 and 65 weeks of age. However, Cav-1 heterozygous (+/-) mice did not show any changes in long-term survival, indicating that loss of both Cav-1 alleles is required to mediate a reduction in life span. Mechanistically, these dramatic reductions in life span appear to be secondary to a combination of pulmonary fibrosis, pulmonary hypertension, and cardiac hypertrophy in Cav-1 null mice. Taken together, our results provide the first demonstration that loss of Cav-1 gene expression and caveolae organelles dramatically affects the long-term survival of an organism. In addition, aged Cav-1 null mice may provide a new animal model to study the pathogenesis and treatment of progressive hypertrophic cardiomyopathy and sudden cardiac death syndrome.  相似文献   

12.
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.  相似文献   

13.
Platelet activation is characterized by shape change, induction of fibrinogen receptor expression and release of granular contents, leading to aggregation and plug formation. While this response is essential for hemostasis, it is also important in the pathogenesis of a broad spectrum of diseases, including myocardial infarction, stroke and unstable angina. Adenosine 5'-diphosphate (ADP) induces platelet aggregation, but the mechanism for this has not been established, and the relative contribution of ADP in hemostasis and the development of arterial thrombosis is poorly understood. We show here that the purinoceptor P2Y1 is required for platelet shape change in response to ADP and is also a principal receptor mediating ADP-induced platelet aggregation. Activation of P2Y1 resulted in increased intracellular calcium but no alteration in cyclic adenosine monophosphate (cAMP) levels. P2Y1-deficient platelets partially aggregated at higher ADP concentrations, and the lack of P2Y1 did not alter the ability of ADP to inhibit cAMP, indicating that platelets express at least one additional ADP receptor. In vivo, the lack of P2Y1 expression increased bleeding time and protected from collagen- and ADP-induced thromboembolism. These findings support the hypothesis that the ATP receptor P2Y1 is a principal receptor mediating both physiologic and pathological ADP-induced processes in platelets.  相似文献   

14.
Matrix-producing osteoblasts and bone-resorbing osteoclasts maintain bone homeostasis. Osteoclasts are multinucleated, giant cells of hematopoietic origin formed by the fusion of mononuclear pre-osteoclasts derived from myeloid cells. Fusion-mediated giant cell formation is critical for osteoclast maturation; without it, bone resorption is inefficient. To understand how osteoclasts differ from other myeloid lineage cells, we previously compared global mRNA expression patterns in these cells and identified genes of unknown function predominantly expressed in osteoclasts, one of which is the d2 isoform of vacuolar (H(+)) ATPase (v-ATPase) V(0) domain (Atp6v0d2). Here we show that inactivation of Atp6v0d2 in mice results in markedly increased bone mass due to defective osteoclasts and enhanced bone formation. Atp6v0d2 deficiency did not affect differentiation or the v-ATPase activity of osteoclasts. Rather, Atp6v0d2 was required for efficient pre-osteoclast fusion. Increased bone formation was probably due to osteoblast-extrinsic factors, as Atp6v02 was not expressed in osteoblasts and their differentiation ex vivo was not altered in the absence of Atp6v02. Our results identify Atp6v0d2 as a regulator of osteoclast fusion and bone formation, and provide genetic data showing that it is possible to simultaneously inhibit osteoclast maturation and stimulate bone formation by therapeutically targeting the function of a single gene.  相似文献   

15.
16.
BACKGROUND: The role of interleukin (IL)-1 in infectious diseases is controversial; some investigators indicated an enhancing effect of IL-1 on host resistance whereas others demonstrated the protective role of IL-1 receptor antagonist in infection. We evaluated the role of endogenous IL-1 in gut-derived sepsis caused by Pseudomonas aeruginosa, by comparing IL-1-deficient mice and wild-type (WT) mice. METHODS: Gut-derived sepsis was induced by intraperitoneal injection of cyclophosphamide after colonization of P. aeruginosa strain D4 in the intestine. RESULTS: The survival rate of IL-1-deficient mice was significantly lower than that of WT mice (P<0.01). Bacterial counts in the liver, mesenteric lymph node and blood were significantly higher in IL-1-deficient mice than in WT mice. Tumor necrosis factor alpha and IL-6 in the liver were significantly higher in IL-1-deficient mice than in WT mice. In vitro, phagocytosis and cytokine production by macrophages were impaired in IL-1-deficient mice compared with WT mice. CONCLUSION: Our results indicate a critical role for IL-1 during gut-derived P. aeruginosa sepsis. The results also suggest that both impairment of cytokine production and phagocytosis by macrophages are caused by IL-1 deficiency and lead to impaired host response.  相似文献   

17.
18.
19.
TRH is a neuropeptide with a variety of hormonal and neurotransmitter/neuromodulator functions. In particular, TRH has pronounced acute antidepressant effects in both humans and animals and has been implicated in the mediation of the effects of other antidepressive therapies. Two G protein-coupled receptors, TRH receptor 1 (TRH-R1) and TRH-R2, have been identified. Here we report the generation and phenotypic characterization of mice deficient in TRH-R1. The TRH-R1 knockout mice have central hypothyroidism and mild hyperglycemia but exhibit normal growth and development and normal body weight and food intake. Behaviorally, the TRH-R1 knockout mice display increased anxiety and depression levels while behaving normally in a number of other aspects examined. These results provide the first direct evidence that the endogenous TRH system is involved in mood regulation, and this function is carried out through TRH-R1-mediated neural pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号