首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC) transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The expression profile of Wnt ligands and regulators in HSC was not supportive for a major role for β-catenin-dependent canonical Wnt signalling, this verified by inability to induce Topflash reporter activity in HSC even when expressing a constitutive active β-catenin. We detected expression of Wnt5a in activated HSC which can signal via non-canonical mechanisms and showed evidence for non-canonical signalling in these cells involving phosphorylation of Dvl2 and pJNK. Stimulation of HSC or Kupffer cells with Wnt5a regulated HSC apoptosis and expression of TGF-β1 and MCP1 respectively. We were unable to confirm a role for β-catenin-dependent canonical Wnt in HSC and instead propose autocrine and paracrine functions for Wnts expressed by activated HSC via non-canonical pathways. The data warrant detailed investigation of Wnt5a in liver fibrosis.  相似文献   

2.
Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase) and MINK (Misshapen/NIKs-related kinase) MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH) Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo.  相似文献   

3.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   

4.
The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.  相似文献   

5.
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation. The Wnt and BMP (bone morphogenic protein) signalling pathways have been identified as dorsal spinal cord signals with overlapping temporal activity, and both have similar inhibitory effects on OL differentiation. Both these pathways feature prominently in many developmental processes and demyelinating events after injury, and they are known to interact in complex inductive, inhibitive and synergistic manners in many developing systems. The interaction between BMP and Wnt signalling in OL development, however, has not been extensively explored. In the present study, we examine the relationship between the canonical Wnt and BMP pathways. We use pharmacological and genetic paradigms to show that both Wnt3a and BMP4 will inhibit OL differentiation in vitro. We also show that when the canonical BMP signalling pathway is blocked, neither Wnt3a nor BMP4 have inhibitory effects on OL differentiation. In contrast, abrogating the Wnt signalling pathway does not alter the actions of BMP4 treatment. Our results indicate that the BMP signalling pathway is necessary for the canonical Wnt signalling pathway to exert its effects on OL development, but not vice versa, suggesting that Wnt signals upstream of BMP.  相似文献   

6.
7.
8.
Skeletal muscle regeneration is mediated by satellite cells (SCs). Upon injury, SCs undergo self-renewal, proliferation, and differentiation into myoblasts followed by myoblast fusion to form new myofibers. We previously showed that the heparan sulfate (HS) 6-O-endosulfatases (Sulf1 and -2) repress FGF signaling to induce SC differentiation during muscle regeneration. Here, we identify a novel role of Sulfs in myoblast fusion using a skeletal muscle-specific Sulf double null (SulfSK-DN) mouse. Regenerating SulfSK-DN muscles exhibit reduced canonical Wnt signaling and elevated non-canonical Wnt signaling. In addition, we show that Sulfs are required to repress non-canonical Wnt signaling to promote myoblast fusion. Notably, skeletal muscle-relevant non-canonical Wnt ligands lack HS binding capacity, suggesting that Sulfs indirectly repress this pathway. Mechanistically, we show that Sulfs reduce the canonical Wnt-HS binding and regulate colocalization of the co-receptor LRP5 with caveolin3. Therefore, Sulfs may increase the bioavailability of canonical Wnts for Frizzled receptor and LRP5/6 interaction in lipid raft, which may in turn antagonize non-canonical Wnt signaling. Furthermore, changes in subcellular distribution of active focal adhesion kinase (FAK) are associated with the fusion defect of Sulf-deficient myoblasts and upon non-canonical Wnt treatment. Together, our findings uncover a critical role of Sulfs in myoblast fusion by promoting antagonizing canonical Wnt signaling activities against the noncanonical Wnt pathway during skeletal muscle regeneration.  相似文献   

9.
Mouse and human genetic data suggests that Wnt5a is required for jaw development but the specific role in facial skeletogenesis is unknown. We mapped expression of WNT5A in the developing chicken skull and found that the highest expression was in early Meckel's cartilage but by stage 35 expression was decreased to background. We focused on chondrogenesis by targeting a retrovirus expressing WNT5A to the mandibular prominence prior to cell differentiation. Unexpectedly, there were no phenotypes in the first 6 days following injection; however later the mandibular bones and Meckel's cartilage were reduced or missing on the treated side. To examine the effects on cartilage differentiation we treated micromass cultures from mandibular mesenchyme with Wnt5a-conditioned media (CM). Similar to in vivo viral data, cartilage differentiates normally, but, after 6 days of culture, nearly all Alcian blue staining is lost. Collagen II and aggrecan were also decreased in treated cultures. The matrix loss was correlated with upregulation of metalloproteinases, MMP1, MMP13, and ADAMTS5 (codes for Aggrecanase). Moreover, Marimastat, an MMP and Aggrecanase inhibitor rescued cartilage matrix in Wnt5a-CM treated cultures. The pathways mediating these cartilage and RNA changes were investigated using luciferase assays. Wnt5a-CM was a potent inhibitor of the canonical pathway and strongly activated JNK/PCP signaling. To determine whether the matrix loss is mediated by repression of canonical signaling or activation of the JNK pathway we treated mandibular cultures with either DKK1, an antagonist of the canonical pathway, or a small molecule that antagonizes JNK signaling (TCS JNK 6o). DKK1 slightly increased cartilage formation and therefore suggested that the endogenous canonical signaling represses chondrogenesis. To test this further we added an excess of Wnt3a-CM and found that far fewer cartilage nodules differentiated. Since DKK1 did not mimic the effects of Wnt5a we excluded the canonical pathway from mediating the matrix loss phenotype. The JNK antagonist partially rescued the Wnt5a phenotype supporting this non-canonical pathway as the main mediator of the cartilage matrix degradation. Our study reveals two new roles for WNT5A in development and disease: 1) to repress canonical Wnt signaling in cartilage blastema in order to promote normal differentiation and 2) in conditions of excess to stimulate degradation of mature cartilage matrix via non-canonical pathways.  相似文献   

10.

Introduction

Canonical and non-canonical Wnt pathways are involved in the genesis of multiple tumors; however, their role in pituitary tumorigenesis is mostly unknown.

Objective

This study evaluated gene and protein expression of Wnt pathways in pituitary tumors and whether these expression correlate to clinical outcome.

Materials and Methods

Genes of the Wnt canonical pathway: activating ligands (WNT11, WNT4, WNT5A), binding inhibitors (DKK3, sFRP1), β-catenin (CTNNB1), β-catenin degradation complex (APC, AXIN1, GSK3β), inhibitor of β-catenin degradation complex (AKT1), sequester of β-catenin (CDH1), pathway effectors (TCF7, MAPK8, NFAT5), pathway mediators (DVL-1, DVL-2, DVL-3, PRICKLE, VANGL1), target genes (MYB, MYC, WISP2, SPRY1, TP53, CCND1); calcium dependent pathway (PLCB1, CAMK2A, PRKCA, CHP); and planar cell polarity pathway (PTK7, DAAM1, RHOA) were evaluated by QPCR, in 19 GH-, 18 ACTH-secreting, 21 non-secreting (NS) pituitary tumors, and 5 normal pituitaries. Also, the main effectors of canonical (β-catenin), planar cell polarity (JNK), and calcium dependent (NFAT5) Wnt pathways were evaluated by immunohistochemistry.

Results

There are no differences in gene expression of canonical and non-canonical Wnt pathways between all studied subtypes of pituitary tumors and normal pituitaries, except for WISP2, which was over-expressed in ACTH-secreting tumors compared to normal pituitaries (4.8x; p = 0.02), NS pituitary tumors (7.7x; p = 0.004) and GH-secreting tumors (5.0x; p = 0.05). β-catenin, NFAT5 and JNK proteins showed no expression in normal pituitaries and in any of the pituitary tumor subtypes. Furthermore, no association of the studied gene or protein expression was observed with tumor size, recurrence, and progressive disease. The hierarchical clustering showed a regular pattern of genes of the canonical and non-canonical Wnt pathways randomly distributed throughout the dendrogram.

Conclusions

Our data reinforce previous reports suggesting no activation of canonical Wnt pathway in pituitary tumorigenesis. Moreover, we describe, for the first time, evidence that non-canonical Wnt pathways are also not mis-expressed in the pituitary tumors.  相似文献   

11.
Wnt genes encode secreted glycoproteins that act in cell–cell signalling to regulate a wide array of developmental processes, ranging from cellular differentiation to axial patterning. Discovery that canonical Wnt/β-catenin signalling is responsible for regulating head/tail specification in planarian regeneration has recently highlighted their importance in flatworm (phylum Platyhelminthes) development, but examination of their roles in the complex development of the diverse parasitic groups has yet to be conducted. Here, we characterise Wnt genes in the model tapeworm Hymenolepis microstoma and mine genomic resources of free-living and parasitic species for the presence of Wnts and downstream signalling components. We identify orthologs through a combination of BLAST and phylogenetic analyses, showing that flatworms have a highly reduced and dispersed complement that includes orthologs of only five subfamilies (Wnt1, Wnt2, Wnt4, Wnt5 and Wnt11) and fewer paralogs in parasitic flatworms (5–6) than in planarians (9). All major signalling components are identified, including antagonists and receptors, and key binding domains are intact, indicating that the canonical (Wnt/β-catenin) and non-canonical (planar cell polarity and Wnt/Ca2+) pathways are functional. RNA-Seq data show expression of all Hymenolepis Wnts and most downstream components in adults and larvae with the notable exceptions of wnt1, expressed only in adults, and wnt2 expressed only in larvae. The distribution of Wnt subfamilies in animals corroborates the idea that the last common ancestor of the Cnidaria and Bilateria possessed all contemporary Wnts and highlights the extent of gene loss in flatworms.  相似文献   

12.
13.
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) offer immense value in studying cardiovascular regenerative medicine. However, intrinsic biases and differential responsiveness of hPSCs towards cardiac differentiation pose significant technical and logistic hurdles that hamper human cardiomyocyte studies. Tandem modulation of canonical and non-canonical Wnt signaling pathways may play a crucial role in cardiac development that can efficiently generate cardiomyocytes from pluripotent stem cells. Our Wnt signaling expression profiles revealed that phasic modulation of canonical/non-canonical axis enabled orderly recapitulation of cardiac developmental ontogeny. Moreover, evaluation of 8 hPSC lines showed marked commitment towards cardiac-mesoderm during the early phase of differentiation, with elevated levels of canonical Wnts (Wnt3 and 3a) and Mesp1. Whereas continued activation of canonical Wnts was counterproductive, its discrete inhibition during the later phase of cardiac differentiation was accompanied by significant up-regulation of non-canonical Wnt expression (Wnt5a and 11) and enhanced Nkx2.5+ (up to 98%) populations. These Nkx2.5+ populations transited to contracting cardiac troponin T-positive CMs with up to 80% efficiency. Our results suggest that timely modulation of Wnt pathways would transcend intrinsic differentiation biases of hPSCs to consistently generate functional CMs that could facilitate their scalable production for meaningful clinical translation towards personalized regenerative medicine.  相似文献   

14.
15.
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.  相似文献   

16.
Wnt/β-catenin signalling is central to development and its regulation is essential in preventing cancer. Using phosphorylation of Dishevelled as readout of pathway activation, we identified Drosophila Wnk kinase as a new regulator of canonical Wnt/β-catenin signalling. WNK kinases are known for regulating ion co-transporters associated with hypertension disorders. We demonstrate that wnk loss-of-function phenotypes resemble canonical Wnt pathway mutants, while Wnk overexpression causes gain-of-function canonical Wnt-signalling phenotypes. Importantly, knockdown of human WNK1 and WNK2 also results in decreased Wnt signalling in mammalian cell culture, suggesting that Wnk kinases have a conserved function in ensuring peak levels of canonical Wnt signalling.  相似文献   

17.
The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression patterns induced by Wnt3a treatment in two hMSC lines: hMSC-LRP5T253 and hMSC-LRP5T244 cells carrying known mutations of Wnt co-receptor LRP5 (T253I or T244M) that either enhances or represses canonical Wnt signaling, respectively. Wnt3a treatment of hMSC activated not only canonical Wnt signaling, but also the non-canonical Wnt/JNK pathway through upregulation of several non-canonical Wnt components e.g. naked cuticle 1 homolog (NKD1) and WNT11. Activation of the non-canonical Wnt/JNK pathway by anisomycin enhanced osteoblast differentiation whereas its inhibition by SP600125 enhanced adipocyte differentiation of hMSC. In conclusion, canonical and non-canonical Wnt signaling cooperate in determining MSC differentiation fate.  相似文献   

18.

Background  

The Wnt signal transduction pathway is important in a wide variety of developmental processes as well as in the genesis of human cancer. Vertebrate Wnt pathways can be functionally separated into two classes, the canonical Wnt/beta-catenin pathway and the non-canonical Wnt/Ca2+ pathway. Supporting differences in Wnt signaling, gain of function of Wnt-1 in C57mg mouse mammary epithelial cells leads to their morphological transformation while loss of function of Wnt-5a leads to the same transformation. Many downstream target genes of the Wnt/beta-catenin pathway have been identified. In contrast, little is known about the Wnt/Ca2+ pathway and whether it regulates gene expression.  相似文献   

19.

Objective

According to the current hypothesis, tumor-associated macrophages (TAMs) are “corrupted” by cancer cells and subsequently facilitate, rather than inhibit, tumor metastasis. Because the molecular mechanisms of cancer cell–TAM interactions are complicated and controversial we aimed to better define this phenomenon.

Methods and Results

Using microRNA microarrays, Real-time qPCR and Western blot we showed that co-culture of canine mammary tumor cells with TAMs or treatment with macrophage-conditioned medium inhibited the canonical Wnt pathway and activated the non-canonical Wnt pathway in tumor cells. We also showed that co-culture of TAMs with tumor cells increased expression of canonical Wnt inhibitors in TAMs. Subsequently, we demonstrated macrophage-induced invasive growth patterns and epithelial–mesenchymal transition of tumor cells. Validation of these results in canine mammary carcinoma tissues (n = 50) and xenograft tumors indicated the activation of non-canonical and canonical Wnt pathways in metastatic tumors and non-metastatic malignancies, respectively. Activation of non-canonical Wnt pathway correlated with number of TAMs.

Conclusions

We demonstrated that TAMs mediate a “switch” between canonical and non-canonical Wnt signaling pathways in canine mammary tumors, leading to increased tumor invasion and metastasis.Interestingly, similar changes in neoplastic cells were observed in the presence of macrophage-conditioned medium or live macrophages. These observations indicate that rather than being “corrupted” by cancer cells, TAMs constitutively secrete canonical Wnt inhibitors that decrease tumor proliferation and development, but as a side effect, they induce the non-canonical Wnt pathway, which leads to tumor metastasis.These data challenge the conventional understanding of TAM–cancer cell interactions.  相似文献   

20.
Vertebrate heart development requires specification of cardiac precursor cells, migration of cardiac progenitors as well as coordinated cell movements during looping and septation. DM-GRASP/ALCAM/CD166 is a member of the neuronal immunoglobulin domain superfamily of cell adhesion molecules and was recently suggested to be a target gene of non-canonical Wnt signalling. Loss of DM-GRASP function did not affect specification of cardiac progenitor cells. Later during development, expression of cardiac marker genes in the first heart field of Xenopus laevis such as Tbx20 and TnIc was reduced, whereas expression of the second heart field marker genes Isl-1 and BMP-4 was unaffected. Furthermore, loss of DM-GRASP function resulted in defective cell adhesion and cardiac morphogenesis. Additionally, expression of DM-GRASP can rescue the phenotype that results from the loss of non-canonical Wnt11-R signalling suggesting that DM-GRASP and non-canonical Wnt signalling are functionally coupled during cardiac development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号