共查询到20条相似文献,搜索用时 0 毫秒
1.
Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production – the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries. 相似文献
2.
We have examined sediments from a fringing salt marsh in Maine to further understand marine CO metabolism, about which relatively little is known. Intact cores from the marsh emitted CO during dark oxic incubations, but emission rates were significantly higher during anoxic incubations, which provided evidence for simultaneous production and aerobic consumption in surface sediments. CO emission rates were also elevated when cores were exposed to light, which indicated that photochemical reactions play a role in CO production. A kinetic analysis of marsh surface sediments yielded an apparent K(m) of about 82 ppm, which exceeded values reported for well-aerated soils that consume atmospheric CO (65nM). Surface (0-0.2 cm depth interval) sediment slurries incubated under oxic conditions rapidly consumed CO, and methyl fluoride did not inhibit uptake, which indicated that neither ammonia nor methane oxidizers contributed to the observed activity. In contrast, aerobic CO uptake was inhibited by additions of readily available organic substrates (pyruvate, glucose and glycine), but not by cellulose. CO was also consumed by surface and sub-surface sediment slurries incubated under anaerobic conditions, but rates were less than during aerobic incubations. Molybdate and nitrate or nitrite, but not 2-bromoethanesulfonic acid, partially inhibited anaerobic uptake. These results suggest that sulfidogens and acetogens, but not dissimilatory nitrate reducers or methanogens, actively consume CO. Sediment-free plant roots also oxidized CO aerobically; rates for Spartina patens and Limonium carolinianum roots were significantly higher than rates for Spartina alterniflora roots. Thus plants may also impact CO cycling in estuarine environments. 相似文献
3.
Ice rafting of salt marsh peat is a recurrent phenomenon in north temperate regions. This process was simulated in a northern New England salt marsh to test several hypotheses concerning the effects of peat transport from high to low intertidal heights on the growth and mortality of key sessile organisms: the ribbed mussel Geukensia demissa (Dillwyn), the fucoid alga Fucus vesiculosus L. var. spiralis (Farlow) and the cordgrass Spartina alterniflora (Loisel.). Growth rates increased when Geukensia and Fucus were transported to the lower intertidal; however, Spartina died when similarly transported. Predation pressure (primarily from Carcinus maenus L.) on Geukensia was greater when it was rafted to the lower intertidal zone than in the upper intertidal habitat and was size specific; mussels >3.5cm reached a size-escape from crab predation.A winter survey of dislodged mussels revealed that 72% of the mussels collected were dead and 86% had been overgrown by large Fucus plants, >2.5 × the natural frequency of Fucus overgrowth (32%). In marsh habitats where hard substratum is rare, 91% of the Fucus were growing on Geukensia. A dislodgement experiment showed that a significantly greater percentage of Geukensia was dislodged after ice-out when Fucus was attached to the shell than those mussels without Fucus overgrowth. In the spring, a population survey conducted in the salt marsh examined densities, biomass and population structure of Geukensia, as well as densities, percent cover and biomass of Fucus. Values obtained in the foremarsh were compared to those from the peat islands recently rafted to the tidal flats. Both biomass and densities of Geukensia were similar in the two areas; however, the size-frequency distributions of the mussels were different. Since fewer large mussels, Fucus and Fucus-overgrown mussels were found on the newly transported peat islands, this pattern appears to reflect dislodgement of larger Geukensia by attached algae during ice transport. Two ice-related sources of mortality were identified for Geukensia: (1) Fucus overgrowth acted as a vector for mussel dislodgement and was an indirect source of mortality; and (2) ice crushing was a direct source of mortality for non-overgrown mussels. 相似文献
4.
1. The hypothesis that nutrient enrichment will affect bryozoan abundance was tested using two complementary investigations; a field‐based method determining bryozoan abundance in 20 rivers of different nutrient concentrations by deploying statoblast (dormant propagule) traps and an experimental laboratory microcosm study measuring bryozoan growth and mortality. These two methods confirmed independently that increased nutrient concentrations in water promote increases in the biomass of freshwater bryozoans. 2. Statoblasts of the genus Plumatella were recorded in all rivers, regardless of nutrient concentrations, demonstrating that freshwater bryozoans are widespread. Concentrations of Plumatella statoblasts were high in rivers with high nutrient concentrations relative to those with low to moderate nutrient concentrations. Regression analyses indicated that phosphorus concentrations, in particular, significantly influenced statoblast concentrations. 3. Concentrations of Lophopus crystallinus statoblasts were also higher in sites characterised by high nutrient concentrations. Logistic regression analysis revealed that the presence of L. crystallinus statoblasts was significantly associated with decreasing altitude and increasing phosphorus concentrations. This apparently rare species was found in nine rivers (out of 20), seven of which were new sites for L. crystallinus. 4. Growth rates of Fredericella sultana in laboratory microcosms increased with increasing nutrient concentration and high mortality rates were associated with low nutrient concentrations. 5. Our results indicate that bryozoans respond to increasing nutrient concentrations by increased growth, resulting in higher biomasses in enriched waters. We also found that an important component of bryozoan diets can derive from food items lacking chlorophyll a. Finally, bryozoans may be used as independent proxies for inferring trophic conditions, a feature that may be especially valuable in reconstructing historical environments by assessing the abundance of statoblasts in sediment cores. 相似文献
5.
Microbial food webs are responsible for the main carbon flow in shallow eutrophic estuaries of the Baltic Sea. Bacteria account for respirative use most of the autotrophic production. Bottom-up influences are mainly directed to the phytoplankton. Massive increase of phytoplankton biomass has only little effect on the biomasses of the heterotrophic plankton. The investigated ecosystem obviously differs by its high bacteria/non-bacteria heterotrophs-relation from other aquatic ecosystems. 相似文献
6.
Estuary restoration in Tampa Bay, Florida, United States, is an ongoing focus of natural resource managers because of pressure from an increasing coastal population, historic habitat loss, and restoration's importance to economic development, recreational activities, and fish habitat. A growing population can also limit future large‐scale restorations due to associations with cost and land availability. This limitation might be overcome by applying the habitat mosaic approach to restoration, which creates distinct habitat types at small spatial scales. This approach was applied to create three types of estuarine habitat, reconnected tidal creek, salt marsh, and tidal pond. The objectives of this study were to (1) initiate monitoring of a restored wetland mosaic and (2) determine how fish diversity and community structure vary among restored habitat types. Replicated sampling using a 3‐mm mesh seine was used to characterize the fish communities. Our results indicate that the habitat mosaic approach creates suitable habitat for a variety of fish species where 37% of fish species were captured in just one habitat type. In particular, the recreationally important Centropomus undecimalis (common snook) was more common in the mangrove‐lined creek and the non‐native Sarotherodon melanotheron (blackchin tilapia) was common in the tidal pond. Greater emphasis should be placed on applied restoration research to identify how habitat types within a larger restoration mosaic contribute to local species diversity and recreationally and commercially important fishes, while limiting non‐natives. This emphasis could reveal how restoration approaches can be modified to include habitat mosaics, maximizing their contribution to productive fish habitat. 相似文献
7.
In order to increase our understanding of the interaction of soil-halophyte ( Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling—C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor. 相似文献
8.
Low river inflow conditions during 2009/2010 resulted in the mouth of the Great Brak Estuary remaining closed for almost two years. The low water level in Wolwedans Dam resulted in no annual environmental flow releases being made, causing mouth closure. The response of primary producers to this prolonged period of mouth closure was investigated in 2010/2011. Urban and agricultural development in the river catchment and along the estuary banks had increased the nutrient inputs into the estuary. Mouth closure, combined with elevated nutrient concentrations, increased the growth of both macroalgae and microalgae, but little change was observed in the submerged macrophytes. Macroalgal mats covered large areas of open-water surface, smothering the salt marsh and causing a decrease in its cover. These results have important implications for the management of temporarily open/closed estuaries, as increased development, freshwater abstraction and reduced river flow will result in prolonged periods of closure and reduced tidal exchange, which is likely to lead to eutrophication. 相似文献
9.
The present nutrient status of 43 rivers entering Scottish estuaries and firths is reviewed using monitoring data for nitrogen concentrations from the river purification authorities and other sources. Nitrogen concentrations range from very low, with no evidence of elevated levels, to a small number of sites which are highly nitrogen-enriched. Only one estuary site, the Ythan in North-east Scotland, has been proposed as a Nitrate Vulnerable Zone, where a number of chemical and ecological criteria outlined in the EC Nitrate Directive have been met, with potential serious consequences for the natural heritage interests of the estuary. Evidence of nitrogen enrichment in the waters of other Scottish estuaries is discussed in relation to the nitrogen levels in the Ythan Estuary. In addition, the results of ecological studies are discussed for two sites of international importance for waders and waterfowl, viz. Montrose Basin and the Eden Estuary, where there is evidence that changes may be occurring in the intertidal ecology of these estuaries as a result of nutrient enrichment. Requirements for future monitoring and research on nutrient enrichment in the Ythan and other estuaries are discussed. A general approach to nitrogen reductions in the Ythan catchment is presented, in addition to alternative options which might have additional benefits for natural heritage interests. 相似文献
10.
The objective of this study was to identify the impact of nutrient enrichment on the diversity of the ciliate community associated with the roots of the aquatic macrophyte Eichhornia crassipes. The experiment was performed in the Garças Lake, located in the Upper Paraná River floodplain, Brazil. We conducted two treatments (fertilized and control) with three replicates each. To increase the initial nutrient concentrations in each mesocosm of the fertilized treatment, we added 1000 μg L −1 of KNO 3 and 200 μg L −1 of KH 2PO 4 during each sampling date. We found a relative high number of ciliate species (85 species) and a predominance of hypotrichs. Among the recorded species, about 25% occurred exclusively in the fertilized treatment. Moreover, detrended correspondence analysis demonstrated that the ciliate community associated with E. crassipes roots changed significantly in response to the nutrient input in such a way that the species composition of the fertilized treatment was remarkably different from that of the control. In contrast to our expectations, species richness in the fertilized treatment was significantly higher than that in the control, refuting our hypothesis that species richness decreases under eutrophic conditions. 相似文献
12.
An increase in salt marsh restoration efforts,especially over the last two decades, underscores theneed for effective methods to evaluate long-termsuccess. Most marsh restoration/creation efforts areonly evaluated over the first few years afterestablishment and in many cases only vegetativecharacteristics are examined. This study examinesvegetation as well as dominance and abundance patternsof benthic infauna at three created marsh sites ofvarying ages in Winyah Bay, South Carolina, and acreated marsh site in North Carolina, using data fromearlier studies and from sampling undertaken in 1998. Abundances fluctuated strongly between years, withpatterns of numerical abundance changing betweensites. In contrast, species dominance as measured bypercent occurrence tended to remain constant afterestablishment of a site. The same suite of specieswas dominant at all sites regardless of marsh age oryear of sampling. These results indicate that whilefaunal abundance is an important factor in determiningmarsh function (i.e., are higher trophic levelssupported?), dominance may be as useful in monitoringstability, especially in areas where the faunalassemblage is not closely tied to the vegetativecommunity. 相似文献
13.
硫及硫化合物的动态循环是海岸盐沼湿地的重要组成部分,硫酸盐还原菌(SRB)和硫氧化菌(SOB)是推动硫循环的重要微生物。硫酸盐还原菌把硫酸盐还原为硫化物,同时消耗土壤中的有机物质;硫氧化菌把还原性硫化合物氧化为硫酸盐,缓解土壤中硫化物的积累,它们共同维持硫循环的动态平衡。本文综述了海岸盐沼湿地土壤中硫的存在形式、硫的地球化学循环以及在硫循环过程中扮演重要角色的硫酸盐还原菌和硫氧化菌的生物多样性、活性测定方法及其生态学意义等的最新研究进展,并提出了存在的问题及研究展望。 相似文献
14.
【目的】以亚硝酸盐还原酶基因(nirS)为分子标记,探讨富营养化湖泊武汉东湖沉积物中NirS类反硝化细菌群落的多样性及系统发育,并分析环境因子对群落分布的影响。【方法】在武汉东湖4个典型子湖郭郑湖、汤菱湖、团湖和庙湖采集沉积物样品,测定环境参数;提取沉积物中微生物群落基因组DNA,分别构建4个子湖的反硝化微生物的nirS基因文库,利用限制性片段长度的多态性分析(Restriction Fragment LengthPolymorphism,RFLP)技术初步分群,确定各群的代表菌株并测定其nirS基因序列;利用DOTUR软件计算各群落多样性和丰富度指数,以Neighbor-Joining法构建供试菌与参比菌的系统发育树。【结果】环境参数测定结果表明东湖4个子湖中庙湖沉积物总氮(TN)和氨态氮(NH 4+-N)含量最高,团湖最低,郭郑湖沉积物中NO 3-浓度最高。基于NirS序列的生物多样性和丰富度分析表明团湖生物多样性和丰富度指数最高而庙湖各项指数均较低。各子湖供试序列及其代表序列综合RFLP聚类分析表明,武汉东湖沉积物中NirS类反硝化微生物种群具有丰富的多样性。NJ系统发育分析表明东湖沉积物NirS类反硝化菌群可分成3个较大群体(群I-III)。群I占总群体的67.7%,广泛分布于不同的生态环境;来自郭郑湖代表菌的81%分布于群I,而庙湖的代表菌中65%分布于群II。比较分析发现来自于东湖和人工湿地两种生境的NirS群落间具有较高的相似性。【结论】武汉东湖淡水富营养型湖泊沉积物中亚硝酸还原酶基因(nirS)具有丰富的多样性。东湖沉积物中TN、NH 4+和NO 3-的浓度可能是影响NirS类反硝化微生物多样性和空间分布的重要因素之一。 相似文献
15.
Inland salt marshes are rare habitats in the Great Lakes region of North America, formed on salt deposits from the Silurian period. These patchy habitats are abiotically stressful for the freshwater invertebrates that live there, and provide an opportunity to study the relationship between stress and diversity. We used morphological and COI metabarcoding data to assess changes in diversity and composition across both space (a transect from the salt seep to an adjacent freshwater area) and time (three sampling seasons). Richness was significantly lower at the seep site with both datatypes, while metabarcoding data additionally showed reduced richness at the freshwater transect end, consistent with a pattern where intermediate levels of stress show higher diversity. We found complementary, rather than redundant, patterns of community composition using the two datatypes: not all taxa were equally sequenced with the metabarcoding protocol. We identified taxa that are abundant at the salt seep of the marsh, including biting midges ( Culicoides) and ostracods ( Heterocypris). We conclude that (as found in other studies) molecular and morphological work should be used in tandem to identify the biodiversity in this rare habitat. Additionally, salinity may be a driver of community membership in this system, though further ecological research is needed to rule out alternate hypotheses. 相似文献
16.
Effects of nutrient enrichment on the biomass and communitycomposition of heterotrophic bacteria and picocyanobacteriawere studied in large (42 m 3) mesocosms in the brackish-waterArchipelago Sea (Baltic Sea) in late summer 2000 using cellcounts and denaturing gradient gel electrophoresis (DGGE) ofpolymerase chain reaction (PCR)-amplified 16S rRNA gene fragments.The identity of the major DNA bands was determined by sequencing.The obtained sequences were related to - and -proteobacteria,actinobacteria, verrucomicrobia and cyanobacteria. Nitrogenand phosphorus additions increased the biomasses of heterotrophicbacteria and picocyanobacteria and caused significant changesin their community composition judging from the DGGE bandingpatterns. Most verrucomicrobial bands had their highest relativeintensity in the control treatment and their lowest in the highernutrient addition treatment, whereas most Synechococcus-relatedbands had their lowest relative intensity in the lower nutrientaddition treatment. The responses of proteobacteria and actinobacteriawere more variable. The presence of both freshwater and marinesequences among the closest relatives to our sequences highlightsthe intermediate character of the Archipelago Sea between afreshwater and truly marine environment. 相似文献
17.
Heterotrophic microbial communities in seawater and sediments metabolize much of the organic carbon produced in the ocean. Although carbon cycling and preservation depend critically on the capabilities of these microbial communities, their compositions and capabilities have seldom been examined simultaneously at the same site. To compare the abilities of seawater and sedimentary microbial communities to initiate organic matter degradation, we measured the extracellular enzymatic hydrolysis rates of 10 substrates (polysaccharides and algal extracts) in surface seawater and bottom water as well as in surface and anoxic sediments of an Arctic fjord. Patterns of enzyme activities differed between seawater and sediments, not just quantitatively, in accordance with higher cell numbers in sediments, but also in their more diversified enzyme spectrum. Sedimentary microbial communities hydrolyzed all of the fluorescently labeled polysaccharide and algal extracts, in most cases at higher rates in subsurface than surface sediments. In seawater, in contrast, only 5 of the 7 polysaccharides and 2 of the 3 algal extracts were hydrolyzed, and hydrolysis rates in surface and deepwater were virtually identical. To compare bacterial communities, 16S rRNA gene clone libraries were constructed from the same seawater and sediment samples; they diverged strongly in composition. Thus, the broader enzymatic capabilities of the sedimentary microbial communities may result from the compositional differences between seawater and sedimentary microbial communities, rather than from gene expression differences among compositionally similar communities. The greater number of phylum- and subphylum-level lineages and operational taxonomic units in sediments than in seawater samples may reflect the necessity of a wider range of enzymatic capabilities and strategies to access organic matter that has already been degraded during passage through the water column. When transformations of marine organic matter are considered, differences in community composition and their different abilities to access organic matter should be taken into account. 相似文献
18.
Microbial biomass and activity were examined in four different arctic sediments: littoral lake sediment and profundal lake sediment from Toolik Lake, Alaska, thaw pond sediment, and eroding river bank peat. The thaw pond sediment had the largest viable microbial biomass, while the profundal sediment had the smallest. Rates of glucose or acetate incorporation into lipids, glucose mineralization, and lignocellulose mineralization (all normalized per unit of biomass) were highest in the river peat sample, however. The kinetics of glucose mineralization in the profundal sediment were very different from those in the other three samples: although the initial rate of mineralization was five times lower than that in the peat and two times lower than that in the littoral and thaw pond sediments, the maximum amount of 14CO2 evolved from [14C]glucose eventually equaled that in the peat and exceeded that in the littoral and thaw pond sediments by 2.0 and 3.5 times, respectively. Carex aquatilis [14C-cellulose]- and [14C-lignin]lignocellulose mineralization rates in the profundal sediment equaled or exceeded those in the littoral sediment after 16 and 46 days, but the pattern of nutrient limitation differed: the profundal sediment was the only one sampled that exhibited nitrogen limitation, while the other three sediments appeared to be limited primarily by phosphorus. The addition of nitrogen and phosphorus together had no cumulative effects on lignocellulose mineralization. When the rates of mineralization or incorporation of glucose are compared with those of lignocellulose, the results of this study indicate that profundal sediment communities may be better able to utilize the more recalcitrant substrates relative to the labile substrates than microbial communities from sediments rich in detritus and standing macrophytes. 相似文献
19.
Microbial biomass and activity were examined in four different arctic sediments: littoral lake sediment and profundal lake sediment from Toolik Lake, Alaska, thaw pond sediment, and eroding river bank peat. The thaw pond sediment had the largest viable microbial biomass, while the profundal sediment had the smallest. Rates of glucose or acetate incorporation into lipids, glucose mineralization, and lignocellulose mineralization (all normalized per unit of biomass) were highest in the river peat sample, however. The kinetics of glucose mineralization in the profundal sediment were very different from those in the other three samples: although the initial rate of mineralization was five times lower than that in the peat and two times lower than that in the littoral and thaw pond sediments, the maximum amount of 14CO2 evolved from [14C]glucose eventually equaled that in the peat and exceeded that in the littoral and thaw pond sediments by 2.0 and 3.5 times, respectively. Carex aquatilis [14C-cellulose]- and [14C-lignin]lignocellulose mineralization rates in the profundal sediment equaled or exceeded those in the littoral sediment after 16 and 46 days, but the pattern of nutrient limitation differed: the profundal sediment was the only one sampled that exhibited nitrogen limitation, while the other three sediments appeared to be limited primarily by phosphorus. The addition of nitrogen and phosphorus together had no cumulative effects on lignocellulose mineralization. When the rates of mineralization or incorporation of glucose are compared with those of lignocellulose, the results of this study indicate that profundal sediment communities may be better able to utilize the more recalcitrant substrates relative to the labile substrates than microbial communities from sediments rich in detritus and standing macrophytes. 相似文献
|