首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-frequency electromagnetic waves propagating obliquely to an external magnetic field in a plasma with an anisotropic dust component are considered. The cold dust is assumed to have considerable longitudinal and transverse velocity components with respect to the magnetic field. A dispersion relation demonstrating that both fast and slow waves can be unstable is derived in the framework of kinetic theory. Mechanisms and consequences of these instabilities are discussed in the context of the problem of plasma transition into a turbulent state behind the shock front of a supernova.  相似文献   

2.
Effective boundary conditions for the electromagnetic field of the slow surface waves of a thinwalled annular plasma in a metal waveguide are derived and justified. With the boundary conditions obtained, there is no need to solve field equations in the plasma region of the waveguide, so that the dispersion properties of plasma waveguides can be investigated analytically for an arbitrary strength of the external magnetic field. Examples are given that show how to use the effective boundary conditions in order to describe surface waves with a normal and an anomalous dispersion. The boundary conditions are then employed to construct a theory of the radiative Cherenkov instabilities of a thin-walled annular electron beam in a waveguide with a thinwalled annular plasma. The single-particle and collective Cherenkov effects associated with low-and high-frequency surface waves in an arbitrary external magnetic field are studied analytically. The method of the effective boundary conditions is justified in the context of application to the problems of plasma relativistic microwave electronics.  相似文献   

3.
The influence of an external magnetic field on the performance of a high-impedance plasma opening switch is studied experimentally. A 1.5-fold increase in the output voltage of a plasma opening switch operating in the erosion mode is achieved by applying an external magnetic field. The magnetic field strength and the parameters of the plasma opening switch at which the maximum output voltage is attained are determined. It is shown experimentally that the predicted dependence of the maximum output voltage on the Marx generator voltage, U POS [MV]=3.6 (U MG [MV])4/7, is confirmed experimentally.  相似文献   

4.
A study is made of the parametric excitation of potential surface waves propagating in a planar plasma-metal waveguide structure in a magnetic field perpendicular to the plasma-metal boundary. An external, spatially uniform, alternating electric field at the second harmonic of the excited wave is used as the source of parametric excitation. A set of equations is derived that describes the excitation of surface waves due to the onset of decay instability. Expressions for the growth rates in the linear stage of instability are obtained, and the threshold amplitudes of the external electric field above which the parametric instability can occur are found. Analytic expressions for the saturation amplitudes are derived with allowance for the self-interaction of each of the excited waves and the interaction between them. The effect of the plasma parameters and the strength of the external magnetic field on the saturation amplitude, growth rates, and the threshold amplitudes of the pump electric field are analyzed.  相似文献   

5.
Drift-resistive ballooning turbulence is simulated numerically based on a quasi-three-dimensional computer code for solving nonlinear two-fluid MHD equations in the scrape-off layer plasma in a tokamak. It is shown that, when the toroidal geometry of the magnetic field is taken into account, additional (geodesic) flux terms associated with the first poloidal harmonic (∼sinθ) arise in the averaged equations for the momentum, density, and energy. Calculations show that the most important of these terms is the geodesic momentum flux (the Stringer-Windsor effect), which lowers the poloidal rotation velocity. It is also shown that accounting for the toroidal field geometry introduces experimentally observed, special low-frequency MHD harmonics—GA modes—in the Fourier spectra. GA modes are generated by the Reynolds turbulent force and also by the gradient of the poloidally nonuniform turbulent heat flux. Turbulent particle and heat fluxes are obtained as functions of the poloidal coordinate and are found to show that, in a tokamak, there is a “ballooning effect” associated with their maximum in the weak magnetic field region. The dependence of the density, temperature, and pressure on the poloidal coordinate is presented, as well as the dependence of turbulent fluxes on the toroidal magnetic field.  相似文献   

6.
The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring in an electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beam and interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased, the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation and interaction of spatiotemporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator is achieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.  相似文献   

7.
The critical current at which an unsteady oscillating virtual cathode forms in an electron beam is studied as a function of the external magnetic field guiding the beam electrons. It is shown that the critical beam current decreases with external magnetic field and that there is an optimum magnetic induction at which the critical current for the onset of an oscillating virtual cathode in the beam is minimum. For a strong guiding magnetic field, the critical beam current is described by relationships derived under the assumption that the motion of the beam electrons is one-dimensional. Such behavior is explained by the characteristic features of the dynamics of the beam electrons in longitudinal and radial directions in the interaction space at different inductions of the external magnetic field.  相似文献   

8.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Braginskii reduced equations of two-fluid hydrodynamics are modified to take into account the presence of an external ac electric field localized in the tokamak near-wall layer. Numerical simulations show that, after reaching certain amplitude, such a field oscillating with the frequency ω ≈ ωGAM is capable of suppressing turbulent processes. The turbulence suppression mechanism consists in a sharp decrease in the growth rate of drift-resistive ballooning instability due to the appearance of additional nonlinear terms related to the external field in the equation for the vorticity.  相似文献   

10.
The conditions and mechanisms of virtual cathode formation in relativistic and ultrarelativistic electron beams are analyzed with allowance for the magnetic self-field for different magnitudes of the external magnetic field. The typical behavior of the critical current at which an oscillating virtual cathode forms in a relativistic electron beam is investigated as a function of the electron energy and the magnitude of the uniform external magnetic field. It is shown that the conditions for virtual cathode formation in a low external magnetic field are determined by the influence of the magnetic self-field of the relativistic electron beam. In particular, azimuthal instability of the electron beam caused by the action of the beam magnetic self-field, which leads to a reduction in the critical current of the relativistic electron beam, is revealed.  相似文献   

11.
Effects of an external magnetic field on sedimentation enhancement were investigated using three kinds of practical activated sludge. An indoor experiment was setup (3.5l aeration vessel) equipped with a broth circulation system and 800 G of external magnetic field. The application of an external magnetic field to the activated sludge enhanced the sedimentation irrespective of the nature of the activated sludge. At the same time, the flock size of the sludge was enlarged by the external magnetic field. However, the surface zeta potentials of the sludge were not changed by the external magnetic field. Addition of FeCl3 to the sludge enhanced the effects of the external magnetic field. Based on these results, the following mechanism for the enhancement of sedimentation by the external magnetic field is suggested: activated sludge containing iron was magnetized during entry to the magnetic field and coagulated with the magnetic force. As a consequence, the flock size was enlarged. Almost the same sedimentation enhancement by external magnetization was confirmed by a pilot scale magnetization system (2.0 m3 of aeration vessel) when the airlift type of mild broth circulation system was equipped with a 5000 G magnetic field.  相似文献   

12.
A diagnostic method for determining plasma density from the dispersion of surface waves guided by a discharge channel in an axial magnetic field is discussed. The diagnostic characteristics that are the easiest to record experimentally are determined by analyzing the theoretical dispersion curves, and the ways of exploiting these characteristics for plasma diagnostics are suggested. To determine the slowing-down factor of a probing wave in a plasma channel, it is proposed to use diagnostic-signal resonances that occur when the wavelength of the slowed wave becomes equal to the length of the emitting or receiving antenna. The dependence of the plasma density averaged over the cross section of the plasma column on the strength of the external magnetic field is determined for a discharge channel formed as a result of the ionization self-channeling of plasma (lower hybrid) waves and whistlers.  相似文献   

13.
Efficient dynamic interactions among cofactor, enzymes and substrate molecules are of primary importance for multi-step enzymatic reactions with in situ cofactor regeneration. Here we showed for the first time that the above dynamic interactions could be significantly intensified by exerting an external alternating magnetic field on magnetic nanoparticles-supported multi-enzymatic system so that the inter-particle collisions due to Brownian motion of nanoparticles could be improved. To that end, a multienzyme system including glutamate dehydrogenase (GluDH), glucose dehydrogenase (GDH) and cofactor NAD(H) were separately immobilized on silica coated Fe3O4 magnetic nanoparticles with an average diameter of 105 nm, and the effect of magnetic field strength and frequency on the kinetics of the coupled bi-enzyme reaction was investigated. It was found that at low magnetic field frequency (25 Hz and 100 Hz), increasing magnetic field strength from 9.8 to 161.1 Gs led to only very slight increase in reaction rate of the coupled bi-enzyme reaction expressed by glucose consumption rate. At higher magnetic field of 200 Hz and 500 Hz, reaction rate increased significantly with increase of magnetic field strength. When the magnetic field frequency was kept at 500 Hz, the reaction rate increased from 3.89 μM/min to 8.11 μM/min by increasing magnetic field strength from 1.3 to 14.2 Gs. The immobilized bi-enzyme system also showed good reusability and stability in the magnetic field (500 Hz, 14.2 Gs), that about 46% of original activity could be retained after 33 repeated uses, accounting for totally 34 days continuous operation. These results demonstrated the feasibility in intensifying molecular interactions among magnetic nanoparticle-supported multienzymes by using nano-magnetic stirrer for efficient multi-step transformations.  相似文献   

14.
We prove that, at the frequencies generally proposed for extracranial stimulation of the brain, it is not possible, using any superposition of external current sources, to produce a three-dimensional local maximum of the electric field strength inside the brain. The maximum always occurs on a boundary where the conductivity jumps in value. Nevertheless, it may be possible to achieve greater two-dimensional focusing and shaping of the electric field than is currently available. Towards this goal we have used the reciprocity theorem to present a uniform treatment of the electric field inside a conducting medium produced by a variety of sources: an external magnetic dipole (current loop), an external electric dipole (linear antenna), and surface and depth electrodes. This formulation makes use of the lead fields from magneto- and electroencephalography. For the special case of a system with spherically symmetric conductivity, we derive a simple analytic formula for the electric field due to an external magnetic dipole. This formula is independent of the conductivity profile and therefore embraces spherical models with any number of shells. This explains the "insensitivity" to the skull's conductivity that has been described in numerical studies. We also present analytic formulas for the electric field due to an electric dipole, and also surface and depth electrodes, for the case of a sphere of constant conductivity.  相似文献   

15.
The measured dependences of the equivalent plasma resistance on the external magnetic field (0–50 G) in a 46-cm-diameter RF inductive plasma source operating at frequencies of 2, 4, and 13.56 MHz and a power of 100–500 W are presented. The experiments were carried out in argon at pressures of 0.1–30 mTorr. The presence of the external magnetic field leads to the appearance of resonance domains of efficient RF power absorption corresponding to the conditions of resonance excitation of helicons coupled with Trivelpiece–Gould modes. It is shown that RF power absorption at frequencies of 2 MHz can be optimized by applying an external magnetic field corresponding to the domains of resonance absorption. The effect is enhanced with increasing operating frequency.  相似文献   

16.
It is shown how the plateau that has been revealed earlier in the nonlinear dependence of the experimentally studied electrical conductivity of a turbulent plasma on the electric field strength can be understood by taking into account the turbulent Joule heating of the plasma electrons. A new, experimentally possible physical pattern of the penetration of a quasistatic vortex electric field into a turbulent plasma is revealed that is attributed to the time dependence of the anomalous turbulent conductivity or, more generally, to the temporally nonlocal relationship between the current density and the electric field strength due to turbulent heating.  相似文献   

17.
A method for quantitation of protein in the presence of Percoll   总被引:5,自引:0,他引:5  
An electromagnet was modified for measurements of the magnetic circular dichroism of samples held at cryogenic temperatures using a standard laboratory cryostat. The external dimensions of the cryostat are too great to permit its insertion in the air gap between the poles of the magnet without an unacceptable reduction in the strength of the magnetic field at the sample. This problem was overcome by designing new pole caps which become an integral part of the vacuum system of the cryostat. The ends of the new pole caps project into the body of the cryostat so that the gap between them is 1 in. or less, thus achieving a magnetic field exceeding one Tesla at the sample. No permanent alterations of the cryostat are required. The chief advantages of this design are economy and flexibility since a general purpose cryostat is used instead of a special unit designed to fit in the small space between the poles of an unmodified magnet. The cryostat used in this design cools the sample by conduction; thus the problem of optical distortions resulting from bubbling of liquid nitrogen or other cryogen is avoided and the temperature can be varied continuously using standard auxiliary equipment. Extra windows at 90° with respect to the optical beam permit inspection of the sample in situ and could be used for experiments such as fluorescence-detected magnetic circular dichroism which require optical access perpendicular to the direction of the magnetic field.  相似文献   

18.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

19.
Model Studies of the Magnetocardiogram   总被引:7,自引:2,他引:5       下载免费PDF全文
A general expression is developed for the quasi-static magnetic field outside an inhomogeneous nonmagnetic volume conductor containing internal electromotive forces. Multipole expansions for both the electric and magnetic fields are derived. It is shown that the external magnetic field vanishes under conditions of axial symmetry. The magnetic field for a dipole current source in a sphere is derived, and the effect of an eccentric spherical inhomogeneity is analyzed. Finally the magnetic dipole moment is calculated for a current dipole in a conducting prolate spheroid.  相似文献   

20.
A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号