首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Arsbidopsis COP1 (Constitutive Photomorphogenic 1) defines a key repressor of photomorphogenesis in darkness by acting as an E3 ubiquitin Iigase in the nucleus, and is responsible for the targeted degradation of a number of photomorphogenesis-promoting factors, including phyA, HY5, LAF1, and HFR1. Light activation of multiple classes of photoreceptors (including both phytochromes and cryptochromes) inactivates COP1 and reduces its nuclear abundance, allowing the accumulation of these positively acting light signaling intermediates to promote photomorphogenic development. Recent studies suggest that Arabidopsis COP1 teams up with a family of SPA proteins (SPA1-SPA4) to form the physiologically active COP1-SPA E3 ubiquitin ligase complexes. These COP1-SPA complexes play overlapping and distinct functions in regulating seedling photomorphogenesis under different light conditions and adult plant growth. Further, the COP1-SPA complexes act In concert at a biochemical level with the CDD (COP10, DET1, and DDB1) complex and COP9 signalosome (CSN) to orchestrate the repression of photomorphogenesis.  相似文献   

3.
4.
Microarray gene expression profiling was used to examine the role of pleiotropic COP/DET/FUS loci as well as other partially photomorphogenic loci during Arabidopsis seedling development and genome expression regulation. Four types of lethal, pleiotropic cop/det/fus mutants exhibit qualitatively similar gene expression profiles, yet each has specific differences. Mutations in COP1 and DET1 show the most similar genome expression profiles, while the mutations in the COP9 signalosome (CSN) and COP10 exhibit increasingly diverged genome expression profiles in both darkness and light. The genome expression profiles of the viable mutants of COP1 and DET1 in darkness mimic those of the physiological light-regulated genome expression profiles, whereas the genome expression profiles of representative lethal mutants belong to another clade and significantly diverge from the normal light control of genome expression. Instead, these lethal pleiotropic mutants show genome expression profiles similar to those from seedlings growth under high light intensity stress. Distinct lethal pleiotropic cop/det/fus mutants also result in distinct expression profiles in the small portion of genes examined and exhibit similar relatedness in both light and darkness. The partial cop/det/fus mutants affected expression of both light regulated and non-light regulated genes. Our results suggest that pleiotropic COP/DET/FUS loci control is largely overlapping but also has separable roles in plant development. The partially photomorphogenic loci regulate a subset of photomorphogenic responses as well as other non-light regulated processes.  相似文献   

5.
Light mediates plant development partly by orchestrating changes in gene expression, a process which involves a complex combination of positive and negative signaling cascades. Genetic investigations using the small crucifer Arabidopsis thaliana have demonstrated a fundamental role for the down-regulation of light-inducible genes in response to darkness, thus offering a suitable model system for investigating how plants repress gene expression in a developmental context. Rapid progress in eukaryotic gene repression mechanisms in general, and light control of plant gene expression in particular, sheds new light on how a class of ten pleiotropic COP/DET/FUS genes might function to down-regulate light-inducible genes in plants.  相似文献   

6.
Arabidopsis seedlings are genetically endowed with the capability to follow two distinct developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. The regulatory protein CONSTITUTIVE PHOTO-MORPHOGENIC1 (COP1) has been postulated to act as a repressor of photomorphogenesis in the dark because loss-of-function mutations of COP1 result in dark-grown seedlings phenocopying the light-grown wild-type seedlings. In this study, we tested this working model by overexpressing COP1 in the plant and examining its inhibitory effects on photomorphogenic development. Stable transgenic Arabidopsis lines overexpressing COP1 were generated through Agrobacterium-mediated transformation. Overexpression was achieved using either the strong cauliflower mosaic virus 35S RNA promoter or additional copies of the wild-type gene. Analysis of these transgenic lines demonstrated that higher levels of COP1 can inhibit aspects of photomorphogenic seedling development mediated by either phytochromes or a blue light receptor, and the extent of inhibition correlated quantitatively with the vivo COP1 levels. This result provides direct evidence that COP1 acts as a molecular repressor of photomorphogenic development and that multiple photoreceptors can independently mediate the light inactivation of COP1. It also suggests that a controlled inactivation of COP1 may provide a basis for the ability of plants to respond quantitatively to changing light signals, such as fluence rate and photoperiod.  相似文献   

7.
8.
Arabidopsis seedlings exhibit distinct developmental patterns according to their light environment: photomorphogenesis in the light and etiolation or skotomorphogenesis in darkness. COP1 acts within the nucleus to repress photomorphogenesis in darkness, while light depletes COP1 from nucleus and abrogates this repression. COP1 contains three structural modules: a RING finger followed by a coiled-coil domain, and a WD40 repeat domain at the C-terminus. By introducing various domain deletion mutants of COP1 into cop1 null mutant backgrounds, we show that all three domains are essential for the function of COP1 in vivo. Interestingly, a fragment containing the N-terminal 282 amino acids of COP1 (N282) with both the RING finger and coiled-coil modules is sufficient to rescue the lethality of the cop1 null mutations at low expression level. However, high expression levels of the N282 fragment result in a phenocopy of the cop1 null mutation. The sensitivity of the seedling to levels of N282 could reflect the importance of the abundance of COP1 for the appropriate regulation of photomorphogenic development.  相似文献   

9.
10.
11.
12.
13.
Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss‐of‐function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light‐signaling mutant, and that AN3 protein is light regulated. Self‐activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target‐gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light‐controlling stomatal development. Together, these components for regulating stomatal development form an AN3–COP1–E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata.  相似文献   

14.
15.
The COP1/SPA complex is an E3 ubiquitin ligase that acts as a key repressor of photomorphogenesis in dark‐grown plants. While both COP1 and the four SPA proteins contain coiled‐coil and WD‐repeat domains, SPA proteins differ from COP1 in carrying an N‐terminal kinase‐like domain that is not present in COP1. Here, we have analyzed the effects of deletions and missense mutations in the N‐terminus of SPA1 when expressed in a spa quadruple mutant background devoid of any other SPA proteins. Deletion of the large N‐terminus of SPA1 severely impaired SPA1 activity in transgenic plants with respect to seedling etiolation, leaf expansion and flowering time. This ΔN SPA1 protein showed a strongly reduced affinity for COP1 in vitro and in vivo, indicating that the N‐terminus contributes to COP1/SPA complex formation. Deletion of only the highly conserved 95 amino acids of the kinase‐like domain did not severely affect SPA1 function nor interactions with COP1 or cryptochromes. In contrast, missense mutations in this part of the kinase‐like domain severely abrogated SPA1 function, suggesting an overriding negative effect of these mutations on SPA1 activity. We therefore hypothesize that the sequence of the kinase‐like domain has been conserved during evolution because it carries structural information important for the activity of SPA1 in darkness. The N‐terminus of SPA1 was not essential for light responsiveness of seedlings, suggesting that photoreceptors can inhibit the COP1/SPA complex in the absence of the SPA1 N‐terminal domain. Together, these results uncover an important, but complex role of the SPA1 N‐terminus in the suppression of photomorphogenesis.  相似文献   

16.
Arabidopsis (Arabidopsis thaliana) CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and members of the SUPPRESSOR OF PHYTOCHROMEA-105 (SPA) protein family form an E3 ubiquitin ligase that suppresses light signaling in darkness by polyubiquitinating positive regulators of the light response. COP1/SPA is inactivated by light to allow photomorphogenesis to proceed. Mechanisms of inactivation include light-induced degradation of SPA1 and, in particular, SPA2, corresponding to a particularly efficient inactivation of COP1/SPA2 by light. Here, we show that SPA3 and SPA4 proteins are stable in the light, indicating that light-induced destabilization is specific to SPA1 and SPA2, possibly related to the predominant function of SPA1 and SPA2 in dark-grown etiolating seedlings. SPA2 degradation involves cullin and the COP10-DEETIOLATED-DAMAGED-DNA BINDING PROTEIN (DDB1) CDD complex, besides COP1. Consistent with this finding, light-induced SPA2 degradation required the DDB1-interacting Trp-Asp (WD)-repeat domain of SPA2. Deletion of the N-terminus of SPA2 containing the kinase domain led to strong stabilization of SPA2 in darkness and fully abolished light-induced degradation of SPA2. This prevented seedling de-etiolation even in very strong far-red and blue light and reduced de-etiolation in red light, indicating destabilization of SPA2 through its N-terminal domain is essential for light response. SPA2 is exclusively destabilized by phytochrome A in far-red and blue light. However, deletion of the N-terminal domain of SPA2 did not abolish SPA2-phytochrome A interaction in yeast nor in vivo. Our domain mapping suggests there are two SPA2-phytochrome A interacting domains, the N-terminal domain and the WD-repeat domain. Conferring a light-induced SPA2-phyA interaction only via the WD-repeat domain may thus not lead to COP1/SPA2 inactivation.

Light inactivates the COP1/SPA2 repressor of photomorphogenesis through cullin- and CDD-mediated degradation of SPA2, whereas the family members SPA3 and SPA4 are stable in the light.  相似文献   

17.
COP1 E3泛素连接酶最初是在植物中作为光形态建成的关键抑制因子被发现和广泛研究的,是植物生长发育和环境适应过程中的核心“开关”。光受体接收外界环境信号后传递给COP1,COP1再靶向调控下游核心转录因子,从而完成光形态建成等生命过程。在哺乳动物中,尽管大部分光受体都消失,但COP1仍在代谢调控和肿瘤发生过程中靶向重要的转录因子。通过比较动植物中COP1调控过程的异同发现,哺乳动物中COP1所感知的上游信号几乎是未知的,其中COP1结合CRL4形成的复合体E3泛素连接酶的组装机制调控仍不清楚。植物中光是其主要能量来源和COP1的主要上游信号,而作为动物的主要能量来源,葡萄糖和相关激素很可能也是动物COP1的上游信号。同时,通过总结医学研究中针对蛋白质泛素化相关过程的丰富靶点和相关药物,可以为植物COP1等E3泛素连接酶的研究提供有效工具。COP1在细胞生命过程调控中至关重要,其功能和作用机制随着进化而产生多样性,尚有待继续深入探究。  相似文献   

18.
In Arabidopsis thaliana, loss of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) function leads to constitutive photomorphogenesis in the dark associated with inhibition of endoreduplication in the hypocotyl, and a post‐germination growth arrest. MIDGET (MID), a component of the TOPOISOMERASE VI (TOPOVI) complex, is essential for endoreduplication and genome integrity in A. thaliana. Here we show that MID and COP1 interact in vitro and in vivo through the amino terminus of COP1. We further demonstrate that MID supports sub‐nuclear accumulation of COP1. The MID protein is not degraded in a COP1‐dependent fashion in darkness, and the phenotypes of single and double mutants prove that MID is not a target of COP1 but rather a necessary factor for proper COP1 activity with respect to both, control of COP1‐dependent morphogenesis and regulation of endoreduplication. Our data provide evidence for a functional connection between COP1 and the TOPOVI in plants linking COP1‐dependent development with the regulation of endoreduplication.  相似文献   

19.
Plants have evolved light signaling mechanisms to optimally adapt developmental patterns to the ambient light environments. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5) are two critical components in the light signaling pathway in Arabidopsis thaliana. COP1 acts as an E3 ubiquitin ligase that targets positive regulators, such as HY5, leading to their degradation in darkness. However, functional analysis of the COP1-HY5 module in maize (Zea mays) has not been reported. Here, we investigated the expression patterns and roles of the COP1 and HY5 orthologs, ZmCOP1 and ZmHY5, in regulating photomorphogenesis. These two genes have high amino acid identities with their Arabidopsis homolog and were both regulated by light. Subcellular localization assay showed that ZmCOP1 was distributed in the cytosol and ZmHY5 localized in the nucleus. Exogenous expression of ZmCOP1 rescued the physiological defects of the cop1-4 mutant, and expression of ZmHY5 complemented the long hypocotyl phenotype of the hy5-215 mutant in Arabidopsis. Yeast two-hybrid and fluorescence resonance energy transfer assays showed that ZmCOP1 interacted with ZmHY5. Our study gains insight into the conserved function and regulatory mechanism of the COP1-HY5 signaling pathway in maize and Arabidopsis.  相似文献   

20.

Main conclusion

In this review we focus on the role of SPA proteins in light signalling and discuss different aspects, including molecular mechanisms, specificity, and evolution. The ability of plants to perceive and respond to their environment is key to their survival under ever-changing conditions. The abiotic factor light is of particular importance for plants. Light provides plants energy for carbon fixation through photosynthesis, but also is a source of information for the adaptation of growth and development to the environment. Cryptochromes and phytochromes are major photoreceptors involved in control of developmental decisions in response to light cues, including seed germination, seedling de-etiolation, and induction of flowering. The SPA protein family acts in complex with the E3 ubiquitin ligase COP1 to target positive regulators of light responses for degradation by the 26S proteasome to suppress photomorphogenic development in darkness. Light-activated cryptochromes and phytochromes both repress the function of COP1, allowing accumulation of positive photomorphogenic factors in light. In this review, we highlight the role of the SPA proteins in this process and discuss recent advances in understanding how SPAs link light-activation of photoreceptors and downstream signaling.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号