首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

2.
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.  相似文献   

3.
Huang C  Chang SC  Yu IC  Tsay YG  Chang MF 《Journal of virology》2007,81(11):5985-5994
Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin.  相似文献   

4.
The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to a variety of extracellular stimuli such as growth factor stimulation. The best-characterized MAPK pathway involves the sequential activation of Raf, MEK and ERK proteins, capable of regulating the gene expression required for cell proliferation. Binding to specific lipids can regulate both the subcellular localization of these MAPK signaling proteins as well as their kinase activities. More recently it has become increasingly clear that the majority of MAPK signaling takes place intracellularly on endosomes and that the perturbation of endocytic pathways has dramatic effects on the MAPK pathway. This review highlights the direct effects of lipids on the localization and regulation of MAPK pathway proteins. In addition, the indirect effects lipids have on MAPK signaling via their regulation of endocytosis and the biophysical properties of different membrane lipids as a result of growth factor stimulation are discussed. The ability of a protein to bind to both lipids and proteins at the same time may act like a "ZIP code" to target that protein to a highly specific microlocation and could also allow a protein to be "handed off" to maintain tight control over its binding partners and location.  相似文献   

5.
Mutations in the phosphotyrosine binding domain protein ARH cause autosomal recessive hypercholesterolemia, a disorder caused by defective internalization of low density lipoprotein receptors (LDLR) in the liver. To examine the function of ARH, we used pull-down experiments to test for interactions between ARH, the LDLR, and proteins involved in clathrin-mediated endocytosis. The phosphotyrosine binding domain of ARH interacted with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR in a sequence-specific manner. Mutations in the NPVY sequence that were previously shown to decrease LDLR internalization abolished in vitro binding to ARH. Recombinant ARH bound purified bovine clathrin with high affinity (K(D), approximately 44 nm). The interaction between ARH and clathrin was mapped to a canonical clathrin box sequence (LLDLE) in ARH and to the N-terminal domain of the clathrin heavy chain. A highly conserved 20-amino acid sequence in the C-terminal region of ARH bound the beta(2)-adaptin subunit of AP-2. Mutation of a glutamic acid residue in the appendage domain of beta(2)-adaptin that is required for interaction with the adapter protein beta-arrestin markedly reduced binding to ARH. These data are consistent with the hypothesis that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.  相似文献   

6.
7.
The spatial and temporal regulation of the interactions among the approximately 60 proteins required for endocytosis is under active investigation in many laboratories. We have identified the interaction between monomeric clathrin adaptors and endocytic scaffold proteins as a critical prerequisite for the recruitment and/or spatiotemporal dynamics of endocytic proteins at early and late stages of internalization. Quadruple deletion yeast cells (DeltaDeltaDeltaDelta) lacking four putative adaptors, Ent1/2 and Yap1801/2 (homologues of epsin and AP180/CALM proteins), with a plasmid encoding Ent1 or Yap1802 mutants, have defects in endocytosis and growth at 37 degrees C. Live-cell imaging revealed that the dynamics of the early- and late-acting scaffold proteins Ede1 and Pan1, respectively, depend upon adaptor interactions mediated by adaptor asparagine-proline-phenylalanine motifs binding to scaffold Eps15 homology domains. These results suggest that adaptor/scaffold interactions regulate transitions from early to late events and that clathrin adaptor/scaffold protein interaction is essential for clathrin-mediated endocytosis.  相似文献   

8.
MOTIVATION: Neurodegenerative disorders (NDDs) are progressive and fatal disorders, which are commonly characterized by the intracellular or extracellular presence of abnormal protein aggregates. The identification and verification of proteins interacting with causative gene products are effective ways to understand their physiological and pathological functions. The objective of this research is to better understand common molecular pathogenic mechanisms in NDDs by employing protein-protein interaction networks, the domain characteristics commonly identified in NDDs and correlation among NDDs based on domain information. RESULTS: By reviewing published literatures in PubMed, we created pathway maps in Kyoto Encyclopedia of Genes and Genomes (KEGG) for the protein-protein interactions in six NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA) and prion disease (PRION). We also collected data on 201 interacting proteins and 13 compounds with 282 interactions from the literature. We found 19 proteins common to these six NDDs. These common proteins were mainly involved in the apoptosis and MAPK signaling pathways. We expanded the interaction network by adding protein interaction data from the Human Protein Reference Database and gene expression data from the Human Gene Expression Index Database. We then carried out domain analysis on the extended network and found the characteristic domains, such as 14-3-3 protein, phosphotyrosine interaction domain and caspase domain, for the common proteins. Moreover, we found a relatively high correlation between AD, PD, HD and PRION, but not ALS or DRPLA, in terms of the protein domain distributions. AVAILABILITY: http://www.genome.jp/kegg/pathway/hsa/hsa01510.html (KEGG pathway maps for NDDs).  相似文献   

9.
Endocytosis of gentamicin in a proximal tubular renal cell line.   总被引:12,自引:0,他引:12  
The mechanisms by which aminoglycosides are accumulated in renal proximal tubular cells remain unclear. Adsorptive mediated endocytosis, via a common pathway for cationic proteins, or receptor endocytosis, mediated by the glycoprotein 330/megalin, have been proposed to be involved in gentamicin transport in renal cells. We used the LLC-PK1 cell line, derived from the pig proximal tubule, to explore further the regulation of gentamicin endocytosis in these cells and to determine the role of clathrin mediated endocytosis and G proteins in this function. Gentamicin endocytosis was strictly temperature dependent, whereas total uptake (endocytosis plus binding) did not significantly differ at 4 or 37 degrees C. Substances that suppress receptor mediated, clathrin dependent endocytosis, such as monensin, phenylarsine oxide and dansylcadaverine, or inhibit caveolae mediated endocytosis, such as nystatin, did not affect gentamicin entrance in LLC-PK1 cells. Among substances that disrupt the actin cytoskeleton, only cytochalasin D, that is active also on fluid phase endocytosis, significantly reduced the intracellular concentrations of the aminoglycoside. Other maneuvers that perturb clathrin dependent endocytosis without affecting clathrin independent pathway, such as acidification of cytosol or incubation in hypertonic medium, were also without effect. Mastoparan, a well known stimulator of heterotrimeric G proteins, strongly increased endocytosis of gentamicin, and the same effect was evident with two other G protein stimulators, aluminum fluoride and fluoride alone; however the effect seems not to be mediated by an activation of adenylyl cyclase. In conclusion, gentamicin endocytosis in LLC-PK1 cells is probably clathrin independent, limited by cytochalasin D, which interacts with cytoskeleton, and increased by substances like mastoparan and aluminum fluoride, which activate heterotrimeric G proteins.  相似文献   

10.
Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.  相似文献   

11.
Scaffold proteins of the mitogen-activated protein kinase (MAPK) pathway have been proposed to form an active signaling module and enhance the specificity of the transduced signal. Here, we report a 2-A resolution structure of the MAPK scaffold protein MP1 in a complex with its partner protein, p14, that localizes the complex to late endosomes. The structures of these two proteins are remarkably similar, with a five-stranded beta-sheet flanked on either side by a total of three helices. The proteins form a heterodimer in solution and interact mainly through the edge beta-strand in each protein to generate a 10-stranded beta-sheet core. Both proteins also share structural similarity with the amino-terminal regulatory domains of the membrane trafficking proteins, sec22b and Ykt6p, as well as with sedlin (a component of a Golgi-associated membrane-trafficking complex) and the sigma2 and amino-terminal portion of the mu2 subunits of the clathrin adaptor complex AP2. Because neither MP1 nor p14 have been implicated in membrane traffic, we propose that the similar protein folds allow these relatively small proteins to be involved in multiple and simultaneous protein-protein interactions. Mapping of highly conserved, surface-exposed residues on MP1 and p14 provided insight into the potential sites of binding of the signaling kinases MEK1 and ERK1 to this complex, as well as the areas potentially involved in other protein-protein interactions.  相似文献   

12.
Structural insights into the clathrin coat   总被引:2,自引:0,他引:2  
Clathrin is a cytoplasmic protein best known for its role in endocytosis and intracellular trafficking. The diverse nature of clathrin has recently become apparent, with strong evidence available suggesting roles in both chromosome segregation and reassembly of the Golgi apparatus during mitosis. Clathrin functions as a heterohexamer, adopting a three-legged triskelion structure of three clathrin light chains and three heavy chains. During endocytosis clathrin forms a supportive network about the invaginating membrane, interacting with itself and numerous adapter proteins. Advances in the field of structural biology have led us to a greater understanding of clathrin in its assembled state, the clathrin lattice. Combining techniques such as X-ray crystallography, NMR, and cryo-electron microscopy has allowed us to piece together the intricate nature of clathrin-coated vesicles and the interactions of clathrin with its many binding partners. In this review I outline the roles of clathrin within the cell and the recent structural advances that have improved our understanding of clathrin-clathrin and clathrin-protein interactions.  相似文献   

13.
The classical view suggests that adaptor proteins of the clathrin coat mediate the sorting of cargo protein passengers into clathrin-coated pits and the recruitment of clathrin into budding areas in the donor membrane. In the present study, we provide biochemical and morphological evidence that the adaptor protein 1 (AP-1) adaptor of the trans-Golgi network clathrin interacts with microtubules. AP-1 in cytosolic extracts interacted with in vitro assembled microtubules, and these interactions were inhibited by ATP depletion of the extracts or in the presence of 5'-adenylylimidodiphosphate. An overexpressed gamma-subunit of the AP-1 complex associated with microtubules, suggesting that this subunit may mediate the interaction of AP-1 with the cytoskeleton. Purified AP-1 did not interact with purified microtubules, but interaction occurred when an isolated microtubule-associated protein fraction was added to the reaction mix. The gamma-adaptin subunit of AP-1 specifically co-immunoprecipitated with a microtubule-associated protein of type 1a from rat brain cytosol. This suggests that type 1a microtubule-associated protein may mediate the association of AP-1 with microtubules in the cytoplasm. The microtubule binding activity of AP-1 was markedly inhibited in cytosol of mitotic cells. By means of its interaction with microtubule-associated proteins, we propose novel roles for AP-1 adaptors in modulating the dynamics of the cytoskeleton, the stability and shape of coated organelles, and the loading of nascent AP-1-coated vesicles onto appropriate microtubular tracks.  相似文献   

14.
15.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

16.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

17.
K M Huang  K D''Hondt  H Riezman    S K Lemmon 《The EMBO journal》1999,18(14):3897-3908
The major coat proteins of clathrin-coated vesicles are the clathrin triskelion and heterotetrameric associated protein (AP) complexes. The APs are thought to be involved in cargo capture and recruitment of clathrin to the membrane during endocytosis and sorting in the trans-Golgi network/endosomal system. AP180 is an abundant coat protein in brain clathrin-coated vesicles, and it has potent clathrin assembly activity. In Saccharomyces cerevisiae, there are 13 genes encoding homologs of heterotetrameric AP subunits and two genes encoding AP180-related proteins. To test the model that clathrin function is dependent on the heterotetrameric APs and/or AP180 homologs, yeast strains containing multiple disruptions in AP subunit genes, as well as in the two YAP180 genes, were constructed. Surprisingly, the AP deletion strains did not display the phenotypes associated with clathrin deficiency, including slowed growth and endocytosis, defective late Golgi protein retention and impaired cytosol to vacuole/autophagy function. Clathrin-coated vesicles isolated from multiple AP deletion mutants were morphologically indistinguishable from those from wild-type cells. These results indicate that clathrin function and recruitment onto membranes are not dependent upon heterotetrameric adaptors or AP180 homologs in yeast. Therefore, alternative mechanisms for clathrin assembly and coated vesicle formation, as well as the role of AP complexes and AP180-related proteins in these processes, must be considered.  相似文献   

18.
Abstract: Amphiphysin I and II are nerve terminal-enriched proteins that display src homology 3 domain-mediated interactions with dynamin and synaptojanin. It has been demonstrated that the amphiphysins also bind to clathrin, and we have proposed that this interaction may help to target synaptojanin and dynamin to sites of synaptic vesicle endocytosis. To understand better this potential functional role, we have begun to characterize clathrin-amphiphysin interactions. Using PCR from adult human cortex cDNA, we have cloned a number of amphiphysin II splice variants. In in vitro binding assays, the amphiphysin II splice variants display differential clathrin binding and define a 44-amino acid region mediating the interaction. Amphiphysin II truncation and deletion mutants identify two distinct clathrin-binding domains within this region: one with the sequence LLDLDFDP, the second with the sequence PWDLW. Both domains are conserved in amphiphysin I, and saturation binding analysis demonstrates that both sites bind clathrin with approximately equal affinity. The elucidation of clathrin as a splice-specific binding partner for amphiphysin II begins to address the potential functional role(s) for the multiple amphiphysin II splice variants and further supports an important function for clathrin-amphiphysin interactions in protein targeting during endocytosis.  相似文献   

19.
Clathrin-coated vesicles (CCVs) are a central component of endocytosis and traffic between the trans-Golgi network (TGN) and endosomes. Although endocytic CCV formation is well characterized, much less is known about CCV formation at internal membranes. Here we describe two epsin amino-terminal homology (ENTH) domain-containing proteins, Ent3p and Ent5p, that are intimately involved in clathrin function at the Golgi. Both proteins associate with the clathrin adaptor Gga2p in vivo; Ent5p also interacts with the clathrin adaptor complex AP-1 and clathrin. A novel, conserved motif that mediates the interaction of Ent3p and Ent5p with gamma-ear domains of Gga2p and AP-1 is defined. Ent3p and Ent5p colocalize with clathrin, and cells lacking both Ent proteins exhibit defects in clathrin localization and traffic between the Golgi and endosomes. The findings suggest that Ent3p and Ent5p constitute a functionally related pair that co-operate with Gga proteins and AP-1 to recruit clathrin and promote formation of clathrin coats at the Golgi/endosomes. On the basis of our results and the established roles of epsin and epsin-related proteins in endocytosis, we propose that ENTH-domain-containing proteins are a universal component of CCV formation.  相似文献   

20.
Many important physiological roles of the urocortin (UCN) family of peptides as well as CRH involve the type 2 CRH receptor (CRH-R2) and downstream activation of multiple pathways. To characterize molecular determinants of CRH-R2 functional activity, we used HEK293 cells overexpressing recombinant CRH-R2beta and investigated mechanisms involved in attenuation of CRH-R2 signaling activity and uncoupling from intracellular effectors. CRH-R2beta-mediated adenylyl cyclase activation was sensitive to homologous desensitization induced by pretreatment with either UCN-II or the weaker agonist CRH. CRH-R2beta activation induced transient beta-arrestin1 and beta-arrestin2, as well as clathrin, recruitment to the plasma membrane. Beta-arrestin2 appeared to be the main beta-arrestin subtype associated with the receptor. This was followed by CRH-R2beta endocytosis in a mechanism that exhibited distinct agonist-dependent temporal characteristics. CRH-R2beta also induced transient activation of the ERK1/2 and p38MAPK signaling cascades that peaked at 5 min and returned to basal within 20-30 min. Unlike p38MAPK, activated ERK1/2 was localized both in the cytoplasm and nucleus. Experiments employing inhibitors of receptor endocytosis showed that CRH-R2beta-MAPK interaction does not require beta-arrestin, clathrin, or receptor endocytosis. Site-directed mutagenesis studies on CRH-R2beta C terminus showed that the amino acid cassette TAAV at the end of the C terminus is important for CRH-R2beta signaling because loss of a potential phospho-acceptor site in mutant receptors containing deletion or Ala substitution of the cassette TAAV resulted in reduced ERK1/2 activation and accelerated receptor internalization. These findings provide new insights about the signaling mechanisms regulating CRH-R2beta functional activity and determining its biological responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号