首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Elevated glucocorticoid production and reduced hypothalamic POMC mRNA can cause obese phenotypes. Conversely, adrenalectomy can reverse obese phenotypes caused by the absence of leptin, a model in which glucocorticoid production is elevated. Adrenalectomy also increases hypothalamic POMC mRNA in leptin-deficient mice. However most forms of human obesity do not appear to entail elevated plasma glucocorticoids. It is therefore not clear if reducing glucocorticoid production would be useful to treat these forms of obesity. We hypothesized that adrenalectomy would increase hypothalamic POMC mRNA and reverse obese phenotypes in obesity due to a high-fat diet as it does in obesity due to leptin deficiency.  相似文献   

2.
Dube MG  Torto R  Kalra SP 《Peptides》2008,29(4):593-598
Low-grade systemic inflammation, as indicated by increased circulating levels of inflammatory markers CRP and IL-6, is linked to increased risks for cardiovascular diseases (CVD) and diabetes mellitus in obese subjects. Whereas hyperleptinemia in obesity are associated with increased CRP and IL-6 release, the hypothalamic versus peripheral site of leptin action has not been ascertained. The effects of increased leptin supply selectively in the hypothalamus by gene therapy on pro-inflammatory CRP and IL-6 levels and on markers of diabetes in the circulation of ob/ob mice displaying either age-related or dietary obesity were assessed. A recombinant adeno-associated viral vector encoding either green-fluorescent protein (control) or leptin gene was injected intracerebroventricularly. Five weeks later, one-half of each of the vector groups was switched to high-fat diet consumption and the other half continued to consume regular low-fat chow diet. Body weight and visceral white adipose tissue were drastically reduced and hyperinsulinemia and hyperglycemia were abrogated by leptin gene therapy, independent of the dietary fat content. The elevated plasma CRP and IL-6 levels seen in obese ob/ob mice receiving the control vector, regardless of the fat content of the diet, were markedly suppressed by increased hypothalamic leptin in both groups. The results show for the first time that leptin deficiency elevates and reinstatement of leptin selectively in the hypothalamus suppresses the release of pro-inflammatory biomarkers, a response likely to alleviate CVD associated with obesity.  相似文献   

3.
Single nucleotide polymorphisms (SNPs) in the FK506 binding protein 5 (FKBP5) gene combine with traumatic events to increase risk for post-traumatic stress and major depressive disorders (PTSD and MDD). These SNPs increase FKBP51 protein expression through a mechanism involving demethylation of the gene and altered glucocorticoid signaling. Aged animals also display elevated FKBP51 levels, which contribute to impaired resiliency to depressive-like behaviors through impaired glucocorticoid signaling, a phenotype that is abrogated in FKBP5−/− mice. But the age of onset and progressive stability of these phenotypes remain unknown. Moreover, it is unclear how FKBP5 deletion affects other glucocorticoid-dependent processes or if age-associated increases in FKBP51 expression are mediated through a similar epigenetic process caused by SNPs in the FKBP5 gene. Here, we show that FKBP51-mediated impairment in stress resiliency and glucocorticoid signaling occurs by 10 months of age and this increased over their lifespan. Surprisingly, despite these progressive changes in glucocorticoid responsiveness, FKBP5−/− mice displayed normal longevity, glucose tolerance, blood composition and cytokine profiles across lifespan, phenotypes normally associated with glucocorticoid signaling. We also found that methylation of Fkbp5 decreased with age in mice, a process that likely explains the age-associated increases in FKBP51 levels. Thus, epigenetic upregulation of FKBP51 with age can selectively impair psychological stress-resiliency, but does not affect other glucocorticoid-mediated physiological processes. This makes FKBP51 a unique and attractive therapeutic target to treat PTSD and MDD. In addition, aged wild-type mice may be a useful model for investigating the mechanisms of FKBP5 SNPs associated with these disorders.  相似文献   

4.
5.
High phenotypic variation in diet-induced obesity in male C57BL/6J inbred mice suggests a molecular model to investigate non-genetic mechanisms of obesity. Feeding mice a high-fat diet beginning at 8 wk of age resulted in a 4-fold difference in adiposity. The phenotypes of mice characteristic of high or low gainers were evident by 6 wk of age, when mice were still on a low-fat diet; they were amplified after being switched to the high-fat diet and persisted even after the obesogenic protocol was interrupted with a calorically restricted, low-fat chow diet. Accordingly, susceptibility to diet-induced obesity in genetically identical mice is a stable phenotype that can be detected in mice shortly after weaning. Chronologically, differences in adiposity preceded those of feeding efficiency and food intake, suggesting that observed difference in leptin secretion is a factor in determining phenotypes related to food intake. Gene expression analyses of adipose tissue and hypothalamus from mice with low and high weight gain, by microarray and qRT-PCR, showed major changes in the expression of genes of Wnt signaling and tissue re-modeling in adipose tissue. In particular, elevated expression of SFRP5, an inhibitor of Wnt signaling, the imprinted gene MEST and BMP3 may be causally linked to fat mass expansion, since differences in gene expression observed in biopsies of epididymal fat at 7 wk of age (before the high-fat diet) correlated with adiposity after 8 wk on a high-fat diet. We propose that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity.  相似文献   

6.
Neuromedin U (NMU) has been associated with the regulation of food-intake and energy balance in rats. The objective of this study was to identify the sites of gene expression for NMU and the NMU receptor-2 (NMU2R) in the mouse and rat hypothalamus and ascertain the effects of nutritional status on the expression of these genes. In situ hybridization studies revealed that NMU is expressed in several regions of the mouse hypothalamus associated with the regulation of energy balance. Analysis of NMU expression in the obese ob/ob mouse revealed that NMU mRNA levels were elevated in the dorsomedial hypothalamic (DMH) nucleus of obese ob/ob mice compared to lean litter-mates. In addition, NMU mRNA levels were elevated in the DMH of mice fasted for 24 h relative to ad libitum fed controls. The pattern of expression of NMU and NMU2R were more widespread in the hypothalamus of mice than rats. These data provide the first detailed anatomical analysis of the NMU and NMU2R expression in the mouse and advance our knowledge of expression in the rat. The data from the obese rodent models supports the hypothesis that NMU is involved in the regulation of nutritional status.  相似文献   

7.
8.
There is evidence that hypothalamic norepinephrine (NE) plays a role in the control of appetite in the rat. Using specific and sensitive radioenzymatic assays, we determined if there was a difference in the tissue (hypothalamus, cerebral cortex and kidney) concentration of NE or of dopamine (DA) in mice with the hereditary obese-hyperglycemic syndrome (ob/ob) and their normal weight littermates, both when they were in the rapid growth phase (2--3 months of age) and when they were mature (6--7 months of age). The concentration of NE was similar in the cerebral cortex of obese and normal mice and in the kidneys of obese and normal mice. The concentration of DA was similar in the hypothalamus of obese and normal mice. The concentration of DA was similar in the hypothalamus of obese and normal mice and in the cerebral cortex of obese and normal mice. These observations support the concept that alterations in hypothalamic NE may play a role in the obesity of ob/ob mice.  相似文献   

9.
Previous studies conducted in adult obese patients have shown that glucocorticoid receptor and corticosteroid-binding globulin gene polymorphisms influence cortisol-driven obesity and metabolic parameters. We investigated the impact of these polymorphisms in prepubertal obese children that were thoroughly examined for hypothalamic?Cpituitary?Cadrenal axis activity and for metabolic and obesity parameters. Obese children carrier of the allele G of the BclI polymorphism within glucocorticoid receptor gene tend to present a higher percentage of fat mass as well as a decreased cortisol suppression after low-dose dexamethasone as found in adult studies. Additionally, these allele G carriers show a strong correlation between truncal fat mass distribution and cortisol response to a standardized lunch, whereas this correlation is weak in allele C carriers. No differences were found for obesity or metabolic parameters between genotypes at the corticosteroid-binding globulin locus. However, allele 90 carriers present increased 24-h free urinary cortisol. Overall, this study provides new data showing the influence of glucocorticoid receptor and corticosteroid-binding globulin genes in obesity and/or cortisol action in prepubertal obese children.  相似文献   

10.
The ingestion of a valine (Val)-deficient diet results in a significant reduction of food intake and body weight within 24 h, and this phenomenon continues throughout the period over which such a diet is supplied. Both microarray and real-time PCR analyses revealed that the expression of somatostatin mRNA was increased in the hypothalamus in anorectic mice that received a Val-deficient diet. On the other hand, when somatostatin was administered intracerebroventricularly to intact animals that were fed a control diet, their 24-h food intake decreased significantly. In addition, Val-deficient but not pair-fed mice or those fasted for 24 h showed a less than 0.5-fold decrease in the hypothalamic mRNA expression levels of Crym, Foxg1, Itpka and two unknown EST clone genes and a more than twofold increase in those of Slc6a3, Bdh1, Ptgr2 and one unknown EST clone gene. These results suggest that hypothalamic somatostatin and genes responsive to Val deficiency may be involved in the central mechanism of anorexia induced by a Val-deficient diet.  相似文献   

11.
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-alpha) production from adipose tissue is elevated in obese animal models and in obese humans. It plays an important role in the induction of insulin resistance in experimental animals. In this study, we examined hypothalamic tissue expression of TNF-alpha and its receptors and TNF-alpha expression of adipose tissue in lean C57BLKSJ+/+ and obese polygenic New Zealand obese (NZO) mice. Obese animals exhibited hyperglycemia, hyperinsulinemia, hypertriglyceridemia, and hypercholesterinemia. Using RT-PCR, we observed increased expression (2.4-fold) of TNF receptor 2 (p75) in the hypothalamus of obese mice. TNF-alpha expression in adipose tissue of obese mice was eight times higher than in controls. TNF-alpha and TNF receptor 1 (p55) expression in hypothalamic tissue was similar in obese and lean animals. These results suggest that the hypothalamic TNF receptor 2 (p75) might play a role in obesity by modulating the actions of TNF-alpha in conditions of leptin resistance.  相似文献   

12.
13.
14.
Apolipoprotein E (apoE) is a multifunctional protein that is highly expressed in human and murine adipose tissue. Endogenous adipocyte apoE expression influences adipocyte triglyceride turnover and modulates the expression of genes involved in lipid synthesis and oxidation. We now demonstrate the regulation of adipose tissue apoE expression by nutritional status in lean and obese mice. Obesity induced by high-fat diet, or by hyperphagia in ob/ob mice, produces significant reduction of adipose tissue apoE expression at the protein and messenger RNA level. Fasting in C57BL/6J mice for 24 h significantly increased apoE protein and messenger RNA levels. In ob/ob mice, transplantation of adipose tissue from lean littermate controls to restore circulating leptin levels produced significant weight loss over 12 wk and also produced an increase in adipose tissue apoE expression. The increase in adipose tissue apoE expression in this model, however, did not require leptin. Adipose tissue apoE was also significantly increased in ob/ob mice after a 48-h fast or after 7 days of caloric restriction. In summary, obesity suppresses adipose tissue apoE expression, whereas fasting or weight loss increases it. From our previous observations, these changes in adipose tissue apoE expression will have significant impact on adipose tissue lipid flux and lipoprotein metabolism. Furthermore, these results suggest adipose tissue apoE participates in defending adipose tissue and organismal energy homeostasis in response to nutritional perturbation.  相似文献   

15.
The influence of the parasympathetic nervous system in the control of energy expenditure was investigated in obese and lean rodents during chronic administration of drugs that alter parasympathetic transmission. In the genetically obese ob/ob mice and fa/fa rats and in monosodium glutamate induced hypothalamic obese mice, administration of the parasympathetic inhibitors hyoscine, benztropine, and mecamylamine either had no effect on energy balance or caused losses in body weight that could entirely be accounted for by a reduction in food intake; 24-h oxygen consumption in drug-treated animals was no different from that of the nontreated controls. In the lean animals, both the parasympathetic inhibitors (hyoscine, benztropine, and mecamylamine) and stimulators (bethanecol and neostigmine) had no influence on energy balance nor on body composition. These studies refute the concept that an overactive parasympathetic tone underlies the elevated energetic efficiency of obese models and suggests that the parasympathetic nervous system is unlikely to play an important role in the long-term control of energy expenditure.  相似文献   

16.
17.
The genetically, seasonally, and diet-induced obese, glucose-intolerant states in rodents, including ob/ob mice, have each been associated with elevated hypothalamic levels of norepinephrine (NE). With the use of quantitative autoradiography on brain slices of 6-wk-old obese (ob/ob) and lean mice, the adrenergic receptor populations in several hypothalamic nuclei were examined. The binding of [(125)I]iodocyanopindolol to beta(1)- and beta(2)-adrenergic receptors in ob/ob mice was significantly increased in the paraventricular hypothalamic nucleus (PVN) by 30 and 38%, in the ventromedial hypothalamus (VMH) by 23 and 72%, and in the lateral hypothalamus (LH) by 10 and 15%, respectively, relative to lean controls. The binding of [(125)I]iodo-4-hydroxyphenyl-ethyl-aminomethyl-tetralone to alpha(1)-adrenergic receptors was also significantly increased in the PVN (26%), VMH (67%), and LH (21%) of ob/ob mice. In contrast, the binding of [(125)I]paraiodoclonidine to alpha(2)-adrenergic receptors in ob/ob mice was significantly decreased in the VMH (38%) and the dorsomedial hypothalamus (17%) relative to lean controls. This decrease was evident in the alpha(2A)- but not the alpha(2BC)-receptor subtype. Scatchard analysis confirmed this decreased density of alpha(2)-receptors in ob/ob mice. Together with earlier studies, these changes in hypothalamic adrenergic receptors support a role for increased hypothalamic NE activity in the development of the metabolic syndrome of ob/ob mice.  相似文献   

18.
Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.  相似文献   

19.
Obese Zucker rats appear to lack a circadian rhythm of serum corticosterone and maintain relatively high concentrations throughout the 24-h day. The binding characteristics of glucocorticoid receptors in lean and obese Zucker rats were examined in three tissues suggested to be involved in the feedback inhibition of corticosterone: the anterior pituitary, hypothalamus and hippocampus. Hepatic glucocorticoid receptors were also examined to determine if receptor alterations exist in a peripheral tissue. The dissociation constant (Kd) of glucocorticoid receptors in the anterior pituitary of obese rats was 50% greater than the Kd of receptors derived from lean rats. This suggests a decrease in the affinity of these receptors and could indicate a reduced feedback inhibition of corticosterone at the anterior pituitary. Hepatic glucocorticoid receptors of obese rats also showed an increase (150%) in the Kd of binding and a reduction (40%) in the number of receptors. No difference was observed in the Kd or maximal binding of receptors from the hypothalamus or hippocampus of lean and obese rats. It appears that glucocorticoid receptor alterations exist in obese Zucker rats and that these alterations may affect the drive of the pituitary-adrenal axis and possibly the expression of obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号