首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.  相似文献   

2.
Coronins are WD repeat-containing proteins highly conserved in the eukaryotic kingdom implicated in the regulation of F-actin. Mammalian coronin 1, one of the most conserved isoforms expressed in leukocytes, regulates survival of T cells, which has been suggested to be due to its role in preventing F-actin-induced apoptosis. In this study, we come to a different conclusion. We show that coronin 1 does not modulate F-actin and that induction of F-actin failed to induce apoptosis. Instead, coronin 1 was required for providing prosurvival signals, in the absence of which T cells rapidly underwent apoptosis. These results argue against a role for coronin 1 in F-actin-mediated T cell apoptosis and establish coronin 1 as an essential regulator of the balance between prosurvival and proapoptotic signals in naive T cells.  相似文献   

3.
Synapsin I is a neuronal phosphoprotein involved in the localization and stabilization of synaptic vesicles. Recently, synapsin I has been detected in several non-neuronal cell lines, but its function in these cells is unclear. To determine the localization of synapsin I in non-neuronal cells, it was transiently expressed in HeLa and NIH/3T3 cells as an enhanced green fluorescent protein fusion protein. Synapsin I-enhanced green fluorescent protein colocalized with F-actin in both cell lines, particularly with microspikes and membrane ruffles. It did not colocalize with microtubules or vimentin and it did not cause major alterations in cytoskeletal organization. Synapsin Ia-enhanced green fluorescent protein colocalized with microtubule bundles in taxol-treated HeLa cells and with F-actin spots at the plasma membrane in cells treated with cytochalasin B. It did not noticeably affect F-actin reassembly following drug removal. Synapsin Ia-enhanced green fluorescent protein remained colocalized with F-actin in cells treated with nocodazole, and it did not affect reassembly of microtubules following drug removal. These results demonstrate that synapsin I interacts with F-actin in non-neuronal cells and suggest that synapsin I may have a role in regions where actin is highly dynamic.  相似文献   

4.
The actin cytoskeleton controls the overall structure of cells and is highly polarized in chemotaxing cells, with F-actin assembled predominantly in the anterior leading edge and to a lesser degree in the cell's posterior. Wiskott-Aldrich syndrome protein (WASP) has emerged as a central player in controlling actin polymerization. We have investigated WASP function and its regulation in chemotaxing Dictyostelium cells and demonstrated the specific and essential role of WASP in organizing polarized F-actin assembly in chemotaxing cells. Cells expressing very low levels of WASP show reduced F-actin levels and significant defects in polarized F-actin assembly, resulting in an inability to establish axial polarity during chemotaxis. GFP-WASP preferentially localizes at the leading edge and uropod of chemotaxing cells and the B domain of WASP is required for the localization of WASP. We demonstrated that the B domain binds to PI(4,5)P2 and PI(3,4,5)P3 with similar affinities. The interaction between the B domain and PI(3,4,5)P3 plays an important role for the localization of WASP to the leading edge in chemotaxing cells. Our results suggest that the spatial and temporal control of WASP localization and activation is essential for the regulation of directional motility.  相似文献   

5.
Over the past 2 decades our knowledge about actin filaments has evolved from a rigid “pearls on a string” model to that of a complex, highly dynamic protein polymer which can now be analyzed at atomic detail. To achieve this, exploring actin's oligomerization, polymerization, polymorphism, and dynamic behavior has been crucial to understanding in detail how this abundant and ubiquitous protein can fulfill its various functions within living cells. In this review, a correlative view of a number of distinct aspects of actin is presented, and the functional implications of recent structural, biochemical, and mechanical data are critically evaluated. Rational analysis of these various experimental data is achieved using an integrated structural approach which combines intermediate-resolution electron microscopy-based 3-D reconstructions of entire actin filaments with atomic resolution X-ray data of monomeric and polymeric actin.  相似文献   

6.
The contractile ring is a highly dynamic structure, but how this dynamism is accomplished remains unclear. Here, we report the identification and analysis of a novel Drosophila gene, sticky (sti), essential for cytokinesis in all fly proliferating tissues. sti encodes the Drosophila orthologue of the mammalian Citron kinase. RNA interference-mediated silencing of sti in cultured cells causes them to become multinucleate. Components of the contractile ring and central spindle are recruited normally in such STICKY-depleted cells that nevertheless display asymmetric furrowing and aberrant blebbing. Together with an unusual distribution of F-actin and Anillin, these phenotypes are consistent with defective organization of the contractile ring. sti shows opposite genetic interactions with Rho and Rac genes suggesting that these GTPases antagonistically regulate STICKY functions. Similar genetic evidence indicates that RacGAP50C inhibits Rac during cytokinesis. We discuss that antagonism between Rho and Rac pathways may control contractile ring dynamics during cytokinesis.  相似文献   

7.
This article addresses the multiple activities of actin. Starting out with the history of actin's discovery, purification and structure, it emphasizes the close relation between structure and function. In this context, we also point to unconventional actin conformations. Their existence in living cells is not yet well documented, however, they seem to play a special role in the supramolecular patterning that underlies some of the physiological functions of actin. Conceivably, such conformations may contribute to actin's diverse activities in the nucleus that are poorly understood so far.  相似文献   

8.
Modifications can be made to F-actin that do not interfere with the binding of myosin but inhibit force generation, suggesting that actin's internal dynamics are important for muscle contraction. Observations from electron microscopy and x-ray diffraction have shown that subunits in F-actin have a relatively fixed axial rise but a variable twist. One possible explanation for this is that the actin subunits randomly exist in different discrete states of "twist, " with a significant energy barrier separating these states. This would result in very slow torsional transitions. Paracrystals impose increased order on F-actin filaments by reducing the variability in twist. By looking at filaments that have recently been dissociated from paracrystals, we find that F-actin retains a "memory" of its previous environment that persists for many seconds. This would be consistent with slow torsional transitions between discrete states of twist.  相似文献   

9.
10.
WASP family proteins are key players for connecting multiple signaling pathways to F-actin polymerization. To dissect the highly integrated signaling pathways controlling WASP activity, we identified a Rac protein that binds to the GTPase binding domain of WASP. Using two-hybrid and FRET-based functional assays, we identified RacC as a major regulator of WASP. RacC stimulates F-actin assembly in cell-free systems in a WASP-dependent manner. A FRET-based microscopy approach showed local activation of RacC at the leading edge of chemotaxing cells. Cells overexpressing RacC exhibit a significant increase in the level of F-actin polymerization upon cAMP stimulation, which can be blocked by a phosphatidylinositol (PI) 3-kinase inhibitor. Membrane translocation of PI 3-kinase and PI 3,4,5-trisphosphate reporter is absent in racC null cells. Cells overexpressing dominant negative RacC mutants and racC null cells move at a significantly slower speed and show a poor directionality during chemotaxis. Our results suggest that RacC plays an important role in PI 3-kinase activation and WASP activation for dynamic regulation of F-actin assembly during Dictyostelium chemotaxis.  相似文献   

11.
Actin filaments (F-actin) are protein polymers that undergo rapid assembly and disassembly and control an enormous variety of cellular processes ranging from force production to regulation of signal transduction. Consequently, imaging of F-actin has become an increasingly important goal for biologists seeking to understand how cells and tissues function. However, most of the available means for imaging F-actin in living cells suffer from one or more biological or experimental shortcomings. Here we describe fluorescent F-actin probes based on the calponin homology domain of utrophin (Utr-CH), which binds F-actin without stabilizing it in vitro. We show that these probes faithfully report the distribution of F-actin in living and fixed cells, distinguish between stable and dynamic F-actin, and have no obvious effects on processes that depend critically on the balance of actin assembly and disassembly.  相似文献   

12.
F-actin remodelling is essential for a wide variety of cell processes. It is important in exocytosis, where F-actin coats fusing exocytic granules. The purpose of these F-actin coats is unknown. They may be important in stabilizing the fused granules, they may play a contractile role and promote expulsion of granule content and finally may be important in endocytosis. To elucidate these functions of F-actin remodelling requires a reliable method to visualize F-actin dynamics in living cells. The recent development of Lifeact-EGFP transgenic animals offers such an opportunity. Here, we studied the characteristics of exocytosis in pancreatic acinar cells obtained from the Lifeact-EGFP transgenic mice. We show that the time-course of agonist-evoked exocytic events and the kinetics of each single exocytic event are the same for wild type and Lifeact-EGFP transgenic animals. We conclude that Lifeact-EGFP animals are a good model to study of exocytosis and reveal that F-actin coating is dependent on the de novo synthesis of F-actin and that development of actin polymerization occurs simultaneously in all regions of the granule. Our insights using the Lifeact-EGFP mice demonstrate that F-actin coating occurs after granule fusion and is a granule-wide event.  相似文献   

13.
The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development.  相似文献   

14.
The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.  相似文献   

15.
Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.  相似文献   

16.
VDAC forms the major pathway for metabolites across the mitochondrial outer membrane. The regulation of the gating of VDAC channels is an effective way to control the flow of metabolites into and out of mitochondria. Here we present evidence that actin can modulate the gating process of Neurospora crassa VDAC reconstituted into membranes made with phosphatidylcholine. An actin concentration as low as 50 nm caused the VDAC-mediated membrane conductance to drop by as much as 85% at elevated membrane potentials. Actin's effect could be quickly reversed by adding pronase to digest the protein. α-Actin, from mammalian muscle, has a stronger effect than β- and γ-actin from human platelets. The monomeric form of actin, G-actin, is effective. Stabilization of the fibrous form, F-actin, with the mushroom toxin, phalloidin, blocks the effect of actin on VDAC, indicating that F-actin might be ineffective. Cytochalasin B did not interfere with the ability of actin to favor VDAC closure. DNase-I did effectively block actin's effect on VDAC, and VDAC decreased actin's inhibitory effect on DNase-I activity, indicating that N. crassa VDAC competes with DNase-I for the same binding site on actin. The actin-VDAC interaction might be a mechanism by which actin regulates energy metabolism. Received: 28 August 2000/Revised: 1 December 2000  相似文献   

17.
Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin). Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.  相似文献   

18.
The cytoskeleton framework is essential not only for cell structure and stability but also for dynamic processes such as cell migration, division and differentiation. The F-actin cytoskeleton is mechanically stabilised and regulated by various actin-binding proteins, one family of which are the filamins that cross-link F-actin into networks that greatly alter the elastic properties of the cytoskeleton. Filamins also interact with cell membrane-associated extracellular matrix receptors and intracellular signalling proteins providing a potential mechanism for cells to sense their external environment by linking these signalling systems. The stiffness of the external matrix to which cells are attached is an important environmental variable for cellular behaviour. In order for a cell to probe matrix stiffness, a mechanosensing mechanism functioning via alteration of protein structure and/or binding events in response to external tension is required. Current structural, mechanical, biochemical and human disease-associated evidence suggests filamins are good candidates for a role in mechanosensing.  相似文献   

19.
The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics.  相似文献   

20.
Actin remodeling to facilitate membrane fusion   总被引:1,自引:0,他引:1  
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号