首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the sources and sinks of atmospherically deposited Pb at a forested watershed (Plastic Lake) in central Ontario, Canada, Pb pools and fluxes through upland, wetland and lake compartments were measured during 2002/2003 and compared with previous measurements taken between 1989 and 1991. In 2002/2003, annual bulk deposition of Pb was 0.49 mg m−2 compared with 1.90–1.30 mg m−2 in 1989–1991. Annual Pb concentrations in stream water draining the upland part of the catchment were very low (0.04 μg l−1) and were approximately half those measured in 1989–1991 (0.11–0.08 μg l−1). Leaching losses in stream water were small and mass balance estimates indicate almost complete retention (>95%) of atmospherically deposited Pb in upland soils. In contrast, annual Pb concentrations in stream water draining a wetland were between 0.38 and 0.77 μg l−1, with the highest concentration occurring in 2002/2003 and mass balance calculations indicate that the wetland is a net source of Pb in all measured years. Lead concentrations in the lake outflow were low and the average Pb concentration measured in 2002/2003 (0.09 μg l−1) was approximately half the value recorded in 1989–1991 (0.19 μg l−1 both years). Annual mass balance estimates indicate that the lake retained between 2.47 mg m−2 (1989/1990) and 1.42 mg m−2 (2002/2003) and that in 2002/2003 68% of the Pb input to the lake is derived from the terrestrial catchment. These estimates are higher than sediment core records, which indicate around 18 mg m−2 Pb was retained in sediment during the 1990s. Nevertheless, Pb concentrations decrease with sediment depth and 206Pb/207Pb concentrations increase with depth, a pattern also observed in mineral soils that reflects the substantial contribution of anthropogenic Pb to the watershed. Lead isotope data from soil and sediment indicate a recent anthropogenic Pb signal (206Pb/207Pb ∼ 1.185) in upper soils and sediments and an older anthropogenic signal (206Pb/207Pb ∼ 1.20) in deeper soil and sediment. Lead isotope data in sediment and vegetation indicate that practically all the Pb cycled in the forest at Plastic Lake is anthropogenic in origin.  相似文献   

2.
H. De Haan 《Hydrobiologia》1992,229(1):59-71
Humic substances (HS) are the main constituent of the organic carbon pool in stained aquatic ecosystems. HS absorb visible and ultraviolet (UV) light, have acid-base properties and metal and nutrient binding abilities. Based on these characteristics, UV irradiation, pH and the trophic status of aquatic ecosystems will influence the impact of HS on element cycling in surface waters. With climatic change and environmental pollution, UV irradiance, acidification and eutrophication may increase further. In this paper impacts of UV irradiation, pH and eutrophication on the structure, properties and biodegradation of aquatic HS are discussed.  相似文献   

3.
Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the Gram-negative bacterium Myxococcus xanthus . In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.  相似文献   

4.
A series of experiments to determine the survival characteristics of environmental and faecal coliforms in a 1.3 km long experimental pipe distribution system is described. In the first experiments, tertiary treated effluent (10(3)-10(4) coliforms ml-1) was inoculated directly into the distribution system. Coliform organisms were not detected in any samples taken downstream of the inoculation point. By comparison, laboratory jar tests showed low level survival for coliforms at the same chloramine residuals (0.3 mg l-1) for up to 48 h. In the second series of experiments, a by-pass pipe in the experimental distribution system was isolated, drained, and filled with tertiary treated effluent (10(3)-10(4) coliforms ml-1) to simulate the conditions in a dead-end. Coliform numbers were monitored and found to decrease rapidly, but they were still detectable at low levels after 7 weeks. The water in the by-pass section was then released into the main pipe-rig and sampled downstream. No coliforms were detected in water samples or in samples swabbed from the pipe walls. Finally, the flow in the main pipe-rig and in the by-pass was increased to dislodge any deposits and biofilm into the water. The absence of coliforms in any water samples taken during or after the flow increases is contrary to the widely accepted understanding that coliforms survive and grow in biofilms on pipe walls.  相似文献   

5.
We have examined the process by which cell diversity is generated in neuroblast (NB) lineages in the central nervous system of Drosophila melanogaster. Thoracic NB6-4 (NB6-4t) generates both neurons and glial cells, whereas NB6-4a generates only glial cells in abdominal segments. This is attributed to an asymmetric first division of NB6-4t, localizing prospero (pros) and glial cell missing (gcm) only to the glial precursor cell, and a symmetric division of NB6-4a, where both daughter cells express pros and gcm. Here we show that the NB6-4t lineage represents the ground state, which does not require the input of any homeotic gene, whereas the NB6-4a lineage is specified by the homeotic genes abd-A and Abd-B. They specify the NB6-4a lineage by down-regulating levels of the G1 cyclin, DmCycE (CycE). CycE, which is asymmetrically expressed after the first division of NB6-4t, functions upstream of pros and gcm to specify the neuronal sublineage. Loss of CycE function causes homeotic transformation of NB6-4t to NB6-4a, whereas ectopic CycE induces reverse transformations. However, other components of the cell cycle seem to have a minor role in this process, suggesting a critical role for CycE in regulating cell fate in segment-specific neural lineages.  相似文献   

6.
Manganese oxide minerals can become enriched in a variety of metals through adsorption and redox processes, and this forms the basis for a close geochemical relationship between Mn oxide phases and Co. Since oxalate-producing fungi can effect geochemical transformation of Mn oxides, an understanding of the fate of Co during such processes could provide new insights on the geochemical behaviour of Co. In this work, the transformation of Mn oxides by Aspergillus niger was investigated using a Co-bearing manganiferous laterite, and a synthetic Co-doped birnessite. A. niger could transform laterite in both fragmented and powder forms, resulting in formation of biomineral crusts that were composed of Mn oxalates hosting Co, Ni and, in transformed laterite fragments, Mg. Total transformation of Co-doped birnessite resulted in precipitation of Co-bearing Mn oxalate. Fungal transformation of the Mn oxide phases included Mn(III,IV) reduction by oxalate, and may also have involved reduction of Co(III) to Co(II). These findings demonstrate that oxalate-producing fungi can influence Co speciation in Mn oxides, with implications for other hosted metals including Al and Fe. This work also provides further understanding of the roles of fungi as geoactive agents which can inform potential applications in metal bioremediation, recycling and biorecovery.  相似文献   

7.
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases.  相似文献   

8.
9.
In their capacity to transform xenobiotics and polluting compounds, fungal peroxidases and their use in the environmental field have a recognized and important potential. However, both fundamental and practical issues, such as enzyme stability and availability, have delayed the development of industrial applications. Three main protein engineering challenges have been identified: (1) Enhancement of operational stability, specifically hydrogen peroxide stability in the case of fungal peroxidases. (2) Increase of the enzyme redox potential in order to widen the substrate range. (3) Development of heterologous expression and industrial production. The bottlenecks, advances and strategies that have been proven successful are discussed.  相似文献   

10.
The environmental fate and the loss of toxicity of two important antifouling actives, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), were investigated using a bioassay study and an outdoor microcosm study. The bioassay used inhibition of the growth of a marine diatom (Amphora coffeaeformis) to measure the toxicity of ZnPT and CuPT over time in sterile, natural, and sediment-supplemented seawater. In natural seawater and sediment-supplemented seawater in the dark and in sterile seawater exposed to light, growth inhibition was reduced at rates corresponding to the rapid degradation rates for ZnPT and CuPT measured in previous aquatic metabolism, die-away, and photolysis studies. Similarly, the bioassay results from sterile seawater in the dark were consistent with the slower degradation rates measured in abiotic hydrolysis studies. In addition to corroborating the rapid degradation of pyrithione upon exposure to light or sediment, the loss of toxicity indicated that the degradation products were not toxic at the concentrations produced from the dose, which was much higher than predicted environmental concentrations. To supplement environmental fate studies designed to elucidate single-pathway transformations, a microcosm study was conducted to integrate all of the degradation pathways. The study used two sediment and water systems, one of which was dosed during the day and the other at night. The pyrithione degraded rapidly in the water phase, with very little accumulation in the sediment. 2-Pyridine sulfonic acid (PSA) and carbon dioxide were the only detectable degradation products 30 d after dosing. Aquatic toxicity studies with PSA showed no observable effect at concentrations at least three orders of magnitude higher than those for either ZnPT or CuPT. As a result, the worst-case environmental concentration of PSA is expected to be far below the no observable effect concentration.  相似文献   

11.
Tenascin-R (TN-R), a member of the tenascin family of extracellular matrix glycoproteins, is exclusive to the nervous system. It affects cell migration, adhesion and differentiation, although no remarkable clinical consequences have been shown in knock-out animal models. TN-R's expression pattern suggests a possible primary or secondary role in certain neurological problems including malformations, tumors and neurodegenerative disorders. This review summarizes the structure and molecular interactions of this molecule and discusses its function and possible roles in the central nervous system.  相似文献   

12.
13.
The interplay between microorganisms and minerals is a complex and dynamic process that has sculpted the geosphere for nearly the entire history of the Earth. The work of Dr Terry Beveridge and colleagues provided some of the first insights into metal-microbe and mineral-microbe interactions and established a foundation for subsequent detailed investigations of interactions between microorganisms and minerals. Beveridge also envisioned that interdisciplinary approaches and teams would be required to explain how individual microbial cells interact with their immediate environment at nano- or microscopic scales and that through such approaches and using emerging technologies that the details of such interactions would be revealed at the molecular level. With this vision as incentive and inspiration, a multidisciplinary, collaborative team-based investigation was initiated to probe the process of electron transfer (ET) at the microbe-mineral interface. The grand challenge to this team was to address the hypothesis that multiheme c-type cytochromes of dissimilatory metal-reducing bacteria localized to the cell exterior function as the terminal reductases in ET to Fe(III) and Mn(IV) oxides. This question has been the subject of extensive investigation for years, yet the answer has remained elusive. The team involves an integrated group of experimental and computational capabilities at US Department of Energy's Environmental Molecular Sciences Laboratory, a national scientific user facility, as the collaborative focal point. The approach involves a combination of in vitro and in vivo biologic and biogeochemical experiments and computational analyses that, when integrated, provide a conceptual model of the ET process. The resulting conceptual model will be evaluated by integrating and comparing various experimental, i.e. in vitro and in vivo ET kinetics, and theoretical results. Collectively, the grand challenge will provide a detailed view of how organisms engage with mineral surfaces to exchange energy and electron density as required for life function.  相似文献   

14.
抗生素的环境归宿与生态效应研究进展   总被引:8,自引:0,他引:8  
刘锋  陶然  应光国  杨基峰  张丽娟 《生态学报》2010,30(16):4503-4511
抗生素是人类与动物疾病防治中被广泛使用的抑菌或杀菌药物。近年来,随着环境耐药性基因的出现,抗生素引起的环境问题成为公众关注的热点。关于抗生素的检测、环境行为和生态毒性等方面的研究也越来越多。综合已有的研究资料,对抗生素在环境中暴露水平、降解行为及其对生态环境影响等方面进行探讨,并对今后的研究进行展望。  相似文献   

15.
16.
Plant and Soil - Postfire logging recoups the economic value of timber killed by wildfire, but whether such forest management activity supports or impedes forest recovery in stands differing in...  相似文献   

17.
Phytoextraction of toxic metals: a central role for glutathione   总被引:3,自引:0,他引:3  
Phytoextraction has a promising potential as an environmentally friendly clean-up method for soils contaminated with toxic metals. To improve the development of efficient phytoextraction strategies, better knowledge regarding metal uptake, translocation and detoxification in planta is a prerequisite. This review highlights our current understanding on these mechanisms, and their impact on plant growth and health. Special attention is paid to the central role of glutathione (GSH) in this process. Because of the high affinity of metals to thiols and as a precursor for phytochelatins (PCs), GSH is an essential metal chelator. Being an important antioxidant, a direct link between metal detoxification and the oxidative challenge in plants growing on contaminated soils is observed, where GSH could be a key player. In addition, as redox couple, oxidized and reduced GSH transmits specific information, in this way tuning cellular signalling pathways under environmental stress conditions. Possible improvements of phytoextraction could be achieved by using transgenic plants or plant-associated microorganisms. Joined efforts should be made to cope with the challenges faced with phytoextraction in order to successfully implement this technique in the field.  相似文献   

18.
19.
The carbon-flux via algal bloom events involves bacteria as an important mediator. The present study, carried out during the spring inter-monsoon month of April 2008 onboard CRV Sagar Manjusha-06 in the Eastern Arabian Sea, addresses the bloom-specific flow of carbon to bacteria via chromophoric dissolved organic matter (CDOM). Eleven stations monitored were located in the coastal, shelf and open-ocean areas off Ratnagiri (16°59′N, 73°17′E), Goa (15°30′N, 73°48′E) and Bhatkal (13°58′N, 74°33′E) coasts. Visible bloom of “saw-dust” color in the Ratnagiri shelf were microscopically examined and the presence of cyanobacteria Trichodesmium erythraeum and T. thieabautii with cell concentrations as high as 3.05 × 106 trichomes L−1 was recorded. Total bacterial counts (TBC) varied between 94.09 × 108 cells L−1 in the bloom to 1.34 × 108 cells L−1 in the non-bloom area. Chromophoric dissolved organic matter (CDOM) concentrations averaged 2.27 ± 3.02 m−1 (absorption coefficient 325 nm) in the bloom to 0.28 ± 0.07 m−1 in the non-bloom waters respectively. CDOM composition varied from a higher molecular size with lower aromaticity in the bloom to lower molecular size and increased aromaticity in the non-bloom areas respectively. Strong positive relationship of TBC with Chlorophyll a (R 2 = 0.65, p < 0.01) and CDOM concentrations (R 2 = 0.8373, p = 0.01) in the bloom area indicated hydrolysis and/or uptake of CDOM by bacteria. Absorption by mycosporine-like amino acid palythene (λ max = 360 nm) was recorded in the filtrate of bloom. Morphotypes of Trichodesmium-associated bacteria revealed a higher frequency of Gram-positive rods. The role of bacteria in relation to changing CDOM nature and as a factor in affecting oxygen content of the water column is discussed in context of the Arabian Sea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号