首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown. Here, we show that Rif1 (Rap1-interacting-factor-1), originally identified as a telomere-binding factor in yeast, is a critical determinant of the replication timing programme in human cells. Depletion of Rif1 results in specific loss of mid-S replication foci profiles, stimulation of initiation events in early-S-phase and changes in long-range replication timing domain structures. Analyses of replication timing show replication of sequences normally replicating early is delayed, whereas that normally replicating late is advanced, suggesting that replication timing regulation is abrogated in the absence of Rif1. Rif1 tightly binds to nuclear-insoluble structures at late-M-to-early-G1 and regulates chromatin-loop sizes. Furthermore, Rif1 colocalizes specifically with the mid-S replication foci. Thus, Rif1 establishes the mid-S replication domains that are restrained from being activated at early-S-phase. Our results indicate that Rif1 plays crucial roles in determining the replication timing domain structures in human cells through regulating higher-order chromatin architecture.  相似文献   

2.
In all organisms several enzymes that are needed upon replication impediment are targeted to replication forks by interaction with a replication protein. In most cases these proteins interact with the polymerase clamp or with single-stranded DNA binding proteins (SSB). In Escherichia coli an accessory replicative helicase was also shown to interact with the DnaB replicative helicase. Here we have used cytological observation of Venus fluorescent fusion proteins expressed from their endogenous loci in live E. coli cells to determine whether DNA repair and replication restart proteins that interact with a replication protein travel with replication forks. A custom-made microscope that detects active replisome molecules provided that they are present in at least three copies was used. Neither the recombination proteins RecO and RecG, nor the replication accessory helicase Rep are detected specifically in replicating cells in our assay, indicating that either they are not present at progressing replication forks or they are present in less than three copies. The Venus-PriA fusion protein formed foci even in the absence of replication forks, which prevented us from reaching a conclusion.  相似文献   

3.
4.
5.
Noguchi C  Noguchi E 《Genetics》2007,175(2):553-566
Sap1 is involved in replication fork pausing at rDNA repeats and functions during mating-type switching in Schizosaccharomyces pombe. These two roles are dependent on the ability of Sap1 to bind specific DNA sequences at the rDNA and mating-type loci, respectively. In S. pombe, Swi1 and Swi3 form the replication fork protection complex (FPC) and play important roles in the activation of the replication checkpoint and the stabilization of stalled replication forks. Here we describe the roles of Sap1 in the replication checkpoint. We show that Sap1 is involved in the activation of the replication checkpoint kinase Cds1 and that sap1 mutant cells accumulate spontaneous DNA damage during the S- and G2-phases, which is indicative of fork damage. We also show that sap1 mutants have a defect in the resumption of DNA replication after fork arrest. Sap1 is localized at the replication origin ori2004 and this localization is required for the association of the FPC with chromatin. We propose that Sap1 is required to recruit the FPC to chromatin, thereby contributing to the activation of the replication checkpoint and the stabilization of replication forks.  相似文献   

6.
Replication origins, which are responsible for initiating the replication of eukaryotic chromosomal DNAs, are spaced at intervals of 40 to 200 kb. Although the sets of proteins that assemble at replication origins during G(1) to form pre-replicative complexes are highly conserved, the structures of replication origins varies from organism to organism. The identification of replication origins has been a labor-intensive task, requiring the analysis of chromosomal DNA replication intermediates. As a result, only a few replication origins have been identified and studied. In a pair of recently published papers, Raghuraman and colleagues and Wyrick, Aparicio and colleagues provide complementary microarray-based approaches to the identification of replication origins. These genome-wide views of DNA replication in Saccharomyces cerevisiae provide new insights into the way that the genome is duplicated and hold promise for the analysis of other genomes.  相似文献   

7.
8.
Bacteria regulate the frequency and timing of DNA replication initiation by controlling the activity of the replication initiator protein DnaA. SirA is a recently discovered regulator of DnaA in Bacillus subtilis whose synthesis is turned on at the start of sporulation. Here, we demonstrate that SirA contacts DnaA at a patch of 3 residues located on the surface of domain I of the replication initiator protein, corresponding to the binding site used by two unrelated regulators of DnaA found in other bacteria. We show that the interaction of SirA with domain I inhibits the ability of DnaA to bind to the origin of replication. DnaA mutants containing amino acid substitutions of the 3 residues are functional in replication initiation but are immune to inhibition by SirA.  相似文献   

9.
Replication terminus of the Bacillus subtilis chromosome.   总被引:3,自引:1,他引:2       下载免费PDF全文
Bidirectional replication of the Bacillus subtilis chromosome terminates at a point on the circular chromosome which is symmetrically opposite to the replication origin. Since replication rates are similar in both "halves" of the chromosome, termination presumably occurs at the meeting point of the two replication forks. To investigate whether the DNA sequence of this region of the chromosome contributes to the termination event, we have determined the latest replicating region of a chromosome in which this DNA sequence is no longer symmetrically opposite to the origin. The merodiploid strain GSY1127 has a very large nontandem duplication (approximately 25% of the total chromosome length) in the left-hand half of the chromosome, so that size and symmetry of this chromosome are grossly different from those of normal strains. We have examined the replication order of genetic markers in this strain by measuring subtilis terminal marker for replication remains a terminal marker in the merodiploid, i.e., replicates later than a marker situated symmetrically opposite to the replication origin. These results were supported by replication orders determined by pulse-density transfer experiments during synchronous replication. The data obtained indicate that there is a preferred site for the termination of replication in the B. subtilis chromosome.  相似文献   

10.
Mms1 and Mms22 form a Cul4(Ddb1)-like E3 ubiquitin ligase with the cullin Rtt101. In this complex, Rtt101 is bound to the substrate-specific adaptor Mms22 through a linker protein, Mms1. Although the Rtt101(Mms1/Mms22) ubiquitin ligase is important in promoting replication through damaged templates, how it does so has yet to be determined. Here we show that mms1Δ and mms22Δ cells fail to properly regulate DNA replication fork progression when replication stress is present and are defective in recovery from replication fork stress. Consistent with a role in promoting DNA replication, we find that Mms1 is enriched at sites where replication forks have stalled and that this localization requires the known binding partners of Mms1-Rtt101 and Mms22. Mms1 and Mms22 stabilize the replisome during replication stress, as binding of the fork-pausing complex components Mrc1 and Csm3, and DNA polymerase ε, at stalled replication forks is decreased in mms1Δ and mms22Δ. Taken together, these data indicate that Mms1 and Mms22 are important for maintaining the integrity of the replisome when DNA replication forks are slowed by hydroxyurea and thereby promote efficient recovery from replication stress.  相似文献   

11.
12.
13.
14.
DNA replication occurs at discrete sites in the cell. To gain insight into the spatial and temporal organization of the Bacillus subtilis replication cycle, we simultaneously visualized replication origins and the replication machinery (replisomes) inside live cells. We found that the origin of replication is positioned near midcell prior to replication. After initiation, the replisome colocalizes with the origin, confirming that replication initiates near midcell. The replisome remains near midcell after duplicated origins separate. Artificially mispositioning the origin region leads to mislocalization of the replisome indicating that the location of the origin at the time of initiation establishes the position of the replisome. Time-lapse microscopy revealed that a single replisome focus reversibly splits into two closely spaced foci every few seconds in many cells, including cells that recently initiated replication. Thus, sister replication forks are likely not intimately associated with each other throughout the replication cycle. Fork dynamics persisted when replication elongation was halted, and is thus independent of the relative movement of DNA through the replisome. Our results provide new insights into how the replisome is positioned in the cell and refine our current understanding of the spatial and temporal events of the B. subtilis replication cycle.  相似文献   

15.
Studies to elucidate the reactions that occur at the eukaryotic replication fork have been limited by the model systems available. We have established a method for isolating and characterizing Simian Virus 40 (SV40) replication complexes. SV40 rolling circle complexes are isolated using paramagnetic beads and then incubated under replication conditions to obtain continued elongation. In rolling circle replication, the normal mechanism for termination of SV40 replication does not occur and the elongation phase of replication is prolonged. Thus, using this assay system, elongation phase reactions can be examined in the absence of initiation or termination. We show that the protein requirements for elongation of SV40 rolling circles are equivalent to complete SV40 replication reactions. The DNA produced by SV40 rolling circles is double-stranded, unmethylated and with a much longer length than the template DNA. These properties are similar to those of physiological replication forks. We show that proteins associated with the isolated rolling circles, including SV40 T antigen, DNA polymerase alpha, replication protein A (RPA) and RF-C, are necessary for continued DNA synthesis. PCNA is also required but is not associated with the isolated complexes. We present evidence suggesting that synthesis of the leading and lagging strands are co-ordinated in SV40 rolling circle replication. We have used this system to show that both RPA-protein and RPA-DNA interactions are important for RPA's function in elongation.  相似文献   

16.
The replication of pT181 and related plasmids of Staphylococcus aureus proceeds by a rolling circle mechanisms. The initiator proteins encoded by the plasmids of the pT181 family have sequence-specific DNA binding and topoisomerase activities. These proteins nick one strand of the DNA at the origin of replication. The free 3'-hydroxyl end at the nick is then used as a primer for the replication of the leading strand of the DNA. Although these initiator proteins are highly homologous, they show specificity in DNA binding and replication for their cognate DNAs. In this study, we have generated hybrid initiator proteins and studied their various biochemical activities in vitro. Our results show that 6 amino acids are sufficient to determine the DNA binding and replication specificities of such initiator proteins.  相似文献   

17.
Cells carrying the thermosensitive nrdA101 allele are able to replicate entire chromosomes at 42°C when new DNA initiation events are inhibited. We investigated the role of the recombination enzymes on the progression of the DNA replication forks in the nrdA101 mutant at 42°C in the presence of rifampin. Using pulsed-field gel electrophoresis (PFGE), we demonstrated that the replication forks stalled and reversed during the replication progression under this restrictive condition. DNA labeling and flow cytometry experiments supported this finding as the deleterious effects found in the RecB-deficient background were suppressed specifically by the absence of RuvABC; however, this did not occur in a RecG-deficient background. Furthermore, we show that the RecA protein is absolutely required for DNA replication in the nrdA101 mutant at restrictive temperature when the replication forks are reversed. The detrimental effect of the recA deletion is not related to the chromosomal degradation caused by the absence of RecA. The inhibition of DNA replication observed in the nrdA101 recA mutant at 42°C in the presence of rifampin was reverted by the presence of the wild-type RecA protein expressed ectopically but only partially suppressed by the RecA protein with an S25P mutation [RecA(S25P)], deficient in the rescue of the stalled replication forks. We propose that RecA is required to maintain the integrity of the reversed forks in the nrdA101 mutant under certain restrictive conditions, supporting the relationship between DNA replication and recombination enzymes through the stabilization and repair of the stalled replication forks.  相似文献   

18.
The eukaryotic genome is divided into well-defined DNA regions that are programmed to replicate at different times during S phase. Active genes are generally associated with early replication, whereas inactive genes replicate late. This expression pattern might be facilitated by the differential restructuring of chromatin at the time of replication in early or late S phase.  相似文献   

19.
The formation of replication compartments, the subnuclear structures in which the viral DNA genome is replicated, is a hallmark of herpesvirus infections. The localization of proteins and viral DNA within human cytomegalovirus replication compartments is not well characterized. Immunofluorescence analysis demonstrated the accumulation of the viral DNA polymerase subunit UL44 at the periphery of replication compartments and the presence of different populations of UL44 in infected cells. In contrast, the viral single-stranded-DNA binding protein UL57 was distributed throughout replication compartments. Using "click chemistry" to detect 5-ethynyl-2'-deoxyuridine (EdU) incorporation into replicating viral DNA and pulse-chase protocols, we found that viral DNA synthesis occurs at the periphery of replication compartments and that replicated viral DNA subsequently localizes to the interior of replication compartments. The interiors of replication compartments also contain regions in which UL44 and EdU-labeled DNA are absent. The treatment of cells with a viral DNA polymerase inhibitor reversibly caused the dispersal of both UL44 and EdU-labeled viral DNA from replication compartments, indicating that ongoing viral DNA synthesis is necessary to maintain the organization of replication compartments. Our results reveal a previously unappreciated complexity of the organization of human cytomegalovirus replication compartments.  相似文献   

20.
Replication of mitochondrial DNA (mtDNA) is dependent on nuclear-encoded factors. It has been proposed that this reliance may exert spatial restrictions on the sites of mtDNA replication within the cytoplasm, as a previous study only detected mtDNA synthesis in perinuclear mitochondria. We have studied mtDNA replication in situ in a variety of human cell cultures labeled with 5-bromo-2'-deoxyuridine. In contrast to what has been reported, mtDNA synthesis was detected at multiple sites throughout the mitochondrial network following short pulses with bromodeoxyuridine. Although no bromodeoxyuridine incorporation was observed in anuclear platelets, incorporation into mtDNA of fibroblasts that had been enucleated 2 h prior to labeling was readily detectable. Blotting experiments indicated that the bromodeoxyuridine incorporation into mtDNA observed in situ represents replication of the entire mtDNA molecule. The studies also showed that replication of mtDNA occurred at any stage of the cell cycle in proliferating cells and continued in postmitotic cells, although at a lower level. These results demonstrate that mtDNA replication is not restricted to mitochondria in the proximity of the nucleus and imply that all components of the replication machinery are available at sufficient levels throughout the mitochondrial network to permit mtDNA replication throughout the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号