首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TAK-778 has been shown to stimulate osteogenesis both in vitro and in vivo. However, the mechanism by which TAK-778 exerts its effects is still unclear. There is evidence that TAK-778 acts via estrogen-receptor (ER)-mediated signaling; this study therefore aimed to investigate the roles that ERα, ERβ, and membrane ER play in the osteogenic effect of TAK-778. To this end, human bone marrow mesenchymal cells were cultured with TAK-778 in the presence of either ICI182,780 (ERα and ERβ antagonist) or MPP (ERα antagonist) or PD98059 (an extracellular-regulated kinase inhibitor that acts on the membrane ER pathway). The following parameters were evaluated: cell proliferation, collagen content, alkaline phosphatase (ALP) activity and bone-like formation. Data were compared using ANOVA. The effect of TAK-778 on expression of ERα and ERβ was investigated by immunolabeling. In order to investigate whether TAK-778 binds to ER, an ER binding assay was performed. Both immunolabeling and binding assays were conducted using cells from human alveolar bone. The osteogenic effect of TAK-778 was inhibited by ICI182,780 and MPP; however, it was not affected by PD98059. The expression of both ERα and ERβ was not affected by TAK-778. The competition curve obtained from the binding assay using TAK-778 showed maximal displacement when 10−5 M TAK-778 was used. This study's results show that TAK-778 enhances osteoblast differentiation through an ERα-dependent pathway by binding to this receptor and not by increasing the expression of ER. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

4.
5.
6.
7.
8.
Du J  Xu R  Hu Z  Tian Y  Zhu Y  Gu L  Zhou L 《PloS one》2011,6(9):e25213

Background

Hypoxia-inducible factor 1 (HIF-1α) expression induced by hypoxia plays a critical role in promoting tumor angiogenesis and metastasis. However, the molecular mechanisms underlying the induction of HIF-1α in tumor cells remain unknown.

Methodology/Principal Findings

In this study, we reported that hypoxia could induce HIF-1α and VEGF expression accompanied by Rac1 activation in MCF-7 breast cancer cells. Blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1 (T17N) or Rac1 siRNA downregulated hypoxia-induced HIF-1α and VEGF expression. Furthermore, Hypoxia increased PI3K and ERK signaling activity. Both PI3K inhibitor LY294002 and ERK inhibitor U0126 suppressed hypoxia-induced Rac1 activation as well as HIF-1α expression. Moreover, hypoxia treatment resulted in a remarkable production of reactive oxygen species (ROS). N-acetyl-L-cysteine, a scavenger of ROS, inhibited hypoxia-induced ROS generation, PI3K, ERK and Rac1 activation as well as HIF-1α expression.

Conclusions/Significance

Taken together, our study demonstrated that hypoxia-induced HIF-1α expression involves a cascade of signaling events including ROS generation, activation of PI3K and ERK signaling, and subsequent activation of Rac1.  相似文献   

9.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

10.
Silibinin is a polyphenolic flavonoid isolated from the milk thistle (Silybum marianum) and is reported to exhibit anticancer properties. Recently, it has been reported that silibinin inhibits hypoxia-inducible factor-1α (HIF-1α) expression in cancer cells. However, the precise mechanism by which silibinin decreases HIF-1 expression is not fully understood. In this study, silibinin inhibited basal and hypoxia induced expression levels of HIF-1α protein in LNCaP and PC-3 prostate cancer cells, while the rate of HIF-1α protein degradation and mRNA levels were not affected. We found that the decrease in HIF-1 protein by silibinin correlated with suppression of de novo synthesis of HIF-1α protein. Silibinin inhibited global protein synthesis coincided with reduction of eIF4F complex formation and induction of phosphorylation of the translation initiation factor 2α (eIF-2α) which can cause inhibition of general protein synthesis. These results suggest that silibinin’s activity to inhibit HIF-1α protein expression is associated with the suppression of global protein translation.  相似文献   

11.
The proliferation of pulmonary artery smooth muscle cells (PASMCs) is an important cause of pulmonary vascular remodelling in hypoxia-induced pulmonary hypertension (HPH). However, its underlying mechanism has not been well elucidated. Connexin 43 (Cx43) plays crucial roles in vascular smooth muscle cell proliferation in various cardiovascular diseases. Here, the male Sprague-Dawley (SD) rats were exposed to hypoxia (10% O2) for 21 days to induce rat HPH model. PASMCs were treated with CoCl2 (200 µM) for 24 h to establish the HPH cell model. It was found that hypoxia up-regulated the expression of Cx43 and phosphorylation of Cx43 at Ser 368 in rat pulmonary arteries and PASMCs, and stimulated the proliferation and migration of PASMCs. HIF-1α inhibitor echinomycin attenuated the CoCl2-induced Cx43 expression and phosphorylation of Cx43 at Ser 368 in PASMCs. The interaction between HIF-1α and Cx43 promotor was also identified using chromatin immunoprecipitation assay. Moreover, Cx43 specific blocker (37,43Gap27) or knockdown of Cx43 efficiently alleviated the proliferation and migration of PASMCs under chemically induced hypoxia. Therefore, the results above suggest that HIF-1α, as an upstream regulator, promotes the expression of Cx43, and the HIF-1α/Cx43 axis regulates the proliferation and migration of PASMCs in HPH.  相似文献   

12.
13.
In our previous study, we demonstrated that lycopene can inhibit the proliferation of androgen-dependent prostate LNCaP cancer cells through the activation of the peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor alpha (LXRα)-ATP-binding cassette transporter 1 (ABCA1) pathway. However, it is still unclear whether lycopene possesses similar effects in androgen-independent prostate cancer cells DU145 and PC-3. As lycopene inhibited the proliferation of both cell types to a similar extent, we chose DU145 cells for most of the subsequent studies. We show that lycopene significantly increased protein and mRNA expression of PPARγ, LXRα and ABCA1 and cholesterol efflux (i.e., decreased cellular cholesterol and increased cholesterol in culture medium). Lycopene (10 μM) in the presence of a specific antagonist of PPARγ (GW9662) or of LXRα (GGPP) restored the proliferation of DU145 cells and significantly suppressed lycopene-induced protein and mRNA expression of PPARγ and LXRα and cholesterol efflux. Liver X receptor α knockdown by siRNA against LXRα significantly promoted the proliferation of DU145 cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 μM) restored the proliferation to the control level. Furthermore, lycopene in combination with the LXRα agonist T0901317 exhibited synergistic effects on cell proliferation and protein expression of PPARγ, LXRα and ABCA1. These results demonstrate that lycopene can inhibit DU145 cell proliferation via PPARγ-LXRα-ABCA1 pathway and that lycopene and T0901317 exhibit synergistic effects.  相似文献   

14.
An increased level of proinflammatory cytokines, including TNF-α in tumor microenvironment regulates the bioenergetic capacity, immune evasion and survival of cancer cells. Emerging evidences suggest that mitochondrial immune signaling proteins modulates mitochondrial bioenergetic capacity, in addition to the regulation of innate immune response. The optimal oxidative phosphorylation (OxPhos) capacity is required for the maintenance of functional lysosomes and autophagy flux. NLRX1, a mitochondrial NOD family receptor protein, regulates mitochondrial function during apoptosis and tissue injury. However, its role in regulation of mitochondrial and lysosomal function to modulate autophagy flux during inflammatory conditions is not understood. In the current study, we investigated the role of NLRX1 in modulating TNF-α induced autophagy flux and mitochondrial turnover and its implication in regulating the invasive and metastatic capability of breast cancer cells. Expression analyses of clinical breast cancer samples and meta-analysis of multiple public databases revealed that NLRX1 expression is significantly increased in basal-like and metastatic breast carcinoma as compared to non-basal-like and primary breast cancer. Depletion of NLRX1 expression in triple-negative breast cancer cells, altered the organization and activity of OxPhos complexes in presence of TNF-α. NLRX1 depletion further impaired lysosomal function and hence the turnover of damaged mitochondria through mitophagy in presence of TNF-α. Importantly, loss of NLRX1 decreased OxPhos-dependent cell proliferation and migration ability of triple-negative breast cancer cells in presence of TNF-α. These evidences suggest an essential role of NLRX1 in maintaining the crosstalk of mitochondrial metabolism and lysosomal function to regulate invasion and metastasis capability of breast cancer cells.  相似文献   

15.
16.
Tumor necrosis factor alpha (TNF-) is a cytokine that acts as an important mediator of the apoptotic process that also demonstrates selective citotoxicity against malignant breast tumor cells. In the present study, the presence of apoptotic tumor cells and the synthesis of TNF- by inflammatory cells were investigated in tissue samples from grade III invasive breast cancer with long-term follow-up. In situ detection of tumor apoptotic cells was investigated by direct immuno-peroxidase of digoxigenin-labeled genomic DNA. The production of TNF- and tumor cell proliferation were investigated by immunohistochemical procedures. Our data demonstrated that patients with a clinical history of cancer recurrence and metastasis presented a lower number of cancerous apoptotic cells, higher tumor proliferation rates, and lower TNF- expression rates by inflammatory cells than what is observed among patients diagnosed with the same histopathological breast cancer type but in the absence of tumor recurrence and metastasis.  相似文献   

17.
Lu Y  Li X  Lu H  Fan Z 《PloS one》2010,5(12):e15823
Cetuximab, a monoclonal antibody that blocks the epidermal growth factor receptor (EGFR), is currently approved for the treatment of several types of solid tumors. We previously showed that cetuximab can inhibit hypoxia-inducible factor-1 alpha (HIF-1α) protein synthesis by inhibiting the activation of EGFR downstream signaling pathways including Erk, Akt, and mTOR. 1, 9-pyrazoloanthrone (1, 9 PA) is an anthrapyrazolone compound best known as SP600125 that specifically inhibits c-jun N-terminal kinase (JNK). Here, we report 1, 9 PA can downregulate HIF-1α independently of its inhibition of JNK. This downregulatory effect was abolished when the oxygen-dependent domain (ODD) of HIF-1α (HIF-1α-ΔODD, the domain responsible for HIF-1α degradation) was experimentally deleted or when the activity of HIF-1α prolyl hydroxylase (PHD) or the 26S proteasomal complex was inhibited, indicating that the 1, 9 PA downregulates HIF-1α by promoting PHD-dependent HIF-1α degradation. We found that the combination of 1, 9 PA and cetuximab worked synergistically to induce apoptosis in cancer cells in which cetuximab or 1, 9 PA alone had no or only weak apoptotic activity. This synergistic effect was substantially decreased in cancer cells transfected with HIF-1α-ΔODD, indicating that downregulation of HIF-1α was the mechanism of this synergistic effect. More importantly, 1, 9 PA can downregulate HIF-1α in cancer cells that are insensitive to cetuximab-induced inhibition of HIF-1α expression due to overexpression of oncogenic Ras (RasG12V). Our findings suggest that 1, 9 PA is a lead compound of a novel class of drugs that may be used to enhance the response of cancer cells to cetuximab through a complementary effect on the downregulation of HIF-1α.  相似文献   

18.
19.
20.
Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and that the expressed B4GALT1 plays a crucial role in the proliferation of MCF-7 cells through its activity as a membrane receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号