首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

2.
3.
The non‐durable nature of hypersensitive (race‐specific) resistance has stimulated scientists to search for other options such as race‐non‐specific resistance to provide long‐lasting protection against plant diseases. Adult plant resistance gene complex Lr34/Yr18 confers a dual race‐non‐specific type of resistance to wheat against stripe rust (Puccinia striiformis f. sp. tritici) and leaf rust (P. triticina Eriks). This study was conducted to evaluate 59 spring bread wheat (Triticum aestivum L.) genotypes for the presence of the Lr34/Yr18‐linked csLV34 allele using STS marker csLV34 and to determine the effect of this gene complex on the components of partial resistance in wheat to leaf/stripe rust. Lr34/Yr18‐linked csLV34 allele was detected only in 12 genotypes, namely Iqbal 2000, NR‐281, NR 354, NR 363, NR 364, NR 366, NR 367, NR 370, NR 376, 4thEBWYT 509, 4thEBWYT 510 and 4thEBWYT 518. Eleven genotypes showing the amplified Lr34/Yr18‐linked allele were further studied for the assessment of the effect of Lr34/Yr18 on components of partial resistance along with nine genotypes lacking this gene complex. Both stripe and leaf rusts were studied separately. The components of partial resistance including latency period (LP) and infection frequency (IF) were studied on primary leaf (seedling stage), fourth leaf and fully expanded young flag leaf (adult plant stage). Both the stripe and leaf rust fungi showed a prolonged LP and reduced IF on genotypes carrying Lr34/Yr18 gene complex. Generally, a longer LP was associated with a reduced IF at all growth stages. Although significant effect of Lr34/Yr18 gene complex on LP and IF was observed almost at all three growth stages, the effect was more pronounced at flag leaf. This suggested that Lr34/Yr18 gene complex is more effective at later stages of plant growth.  相似文献   

4.
The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain‐of‐function mutations in an ATP‐binding cassette transporter gene. An Lr34‐like fungal disease resistance with a similar broad‐spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34‐expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence‐based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad‐spectrum disease resistance against the most devastating fungal disease of rice.  相似文献   

5.
Plant diseases are a serious threat to crop production. The informed use of naturally occurring disease resistance in plant breeding can greatly contribute to sustainably reduce yield losses caused by plant pathogens. The TaLr34res gene encodes an ABC transporter protein and confers partial, durable, and broad spectrum resistance against several fungal pathogens in wheat. Transgenic barley lines expressing TaLr34res showed enhanced resistance against powdery mildew and leaf rust of barley. While TaLr34res is only active at adult stage in wheat, TaLr34res was found to be highly expressed already at the seedling stage in transgenic barley resulting in severe negative effects on growth. Here, we expressed TaLr34res under the control of the pathogen‐inducible HvGer4c promoter in barley. Sixteen independent barley transformants showed strong resistance against leaf rust and powdery mildew. Infection assays and growth parameter measurements were performed under standard glasshouse and near‐field conditions using a convertible glasshouse. Two HvGer4c::Ta‐Lr34res transgenic events were analysed in detail. Plants of one transformation event had similar grain production compared to wild‐type under glasshouse and near‐field conditions. Our results showed that negative effects caused by constitutive high expression of TaLr34res driven by the endogenous wheat promoter in barley can be eliminated by inducible expression without compromising disease resistance. These data demonstrate that TaLr34res is agronomically useful in barley. We conclude that the generation of a large number of transformants in different barley cultivars followed by early field testing will allow identifying barley lines suitable for breeding.  相似文献   

6.
The effect of leaf rust (Puccinia triticina) infection on intercellular chitinase (EC 3.2.1.14) and peroxidase (EC 1.11.1.7) activities was studied in resistant [RL 6082 (Thatcher/Lr35)] and susceptible (Thatcher) near isogenic wheat (Triticum aestivum L.) lines at seedling, stem elongation and flag leaf stages of plant growth. The levels of activity of these enzymes were low during the seedling and stem elongation stages. Resistant plants at the flag leaf stage, during which the Lr35 resistance gene was maximally expressed, exhibited high constitutive levels of chitinase and peroxidase activities, in contrast to the lower constitutive levels of susceptible plants. The results suggest that chitinase and peroxidase, constitutively present in the intercellular spaces of Thatcher/Lr35 wheat leaves, may play a role in Lr35 mediated resistance to leaf rust.  相似文献   

7.
Maize (corn) is one of the most widely grown cereal crops globally. Fungal diseases of maize cause significant economic damage by reducing maize yields and by increasing input costs for disease management. The most sustainable control of maize diseases is through the release and planting of maize cultivars with durable disease resistance. The wheat gene Lr34 provides durable and partial field resistance against multiple fungal diseases of wheat, including three wheat rust pathogens and wheat powdery mildew. Because of its unique qualities, Lr34 became a cornerstone in many wheat disease resistance programmes. The Lr34 resistance is encoded by a rare variant of an ATP‐binding cassette (ABC) transporter that evolved after wheat domestication. An Lr34‐like disease resistance phenotype has not been reported in other cereal species, including maize. Here, we transformed the Lr34 resistance gene into the maize hybrid Hi‐II. Lr34‐expressing maize plants showed increased resistance against the biotrophic fungal disease common rust and the hemi‐biotrophic disease northern corn leaf blight. Furthermore, the Lr34‐expressing maize plants developed a late leaf tip necrosis phenotype, without negative impact on plant growth. With this and previous reports, it could be shown that Lr34 is effective against various biotrophic and hemi‐biotrophic diseases that collectively parasitize all major cereal crop species.  相似文献   

8.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

9.
It is known that few wheat cultivars maintain their resistance to rust diseases for a long period of time, particularly when crop populations become genetically more uniform. A number of genetically diverse, so far unexploited, sources of rust resistance in the natural as well as mutagenized population of wheat cultivars were identified. Several of these genes were placed in agronomically superior well-adapted backgrounds so that they could be used as pre-breeding stocks for introducing genetic diversity for resistance in a crop population. Some of these stocks when employed as parents in several cross combinations in a breeding programme have generated a number of promising cultivars with diversity for resistance.Many presently grown wheats in India, near-isogenic lines each with Lr14b, Lr14ab, Lr30 and certain international cultivars were identified as possessing diverse sources of adult plant resistance (APR) to leaf rust. Prolonged leaf rust resistance in some of the Indian cultivars was attributed to the likely presence of Lr34 either alone or in combination with other APR components. Tests of allelism carried out in certain cultivars that continue to show adequate levels of field resistance confirm the presence of Lr34, which explains the role that this gene has played in imparting durability for resistance to leaf rust. Also, Lr34 in combination with other APR components increases the levels of resistance, which suggests that combination of certain APR components should be another important strategy for breeding cultivars conferring durable and adequate levels of resistance. A new adult plant leaf rust resistance source that seems to be associated with durability in Arjun has been postulated. Likewise, cultivars possessing Sr2 in combination with certain other specific genes have maintained resistance to stem rust.Further, non-specific resistances that were transferred across widely different genotypes into two of the popular Indian wheats provided easily usable materials to the national breeding programmes for imparting durable resistance to stripe rust.  相似文献   

10.
The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low‐expressing single copy Lr34res genotype that conferred partial resistance. Pathogen‐induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24–72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4‐reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24‐h post‐inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3‐deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose.  相似文献   

11.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

12.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

13.
The locus Lr34/Yr18/Pm38 confers partial and durable resistance against the devastating fungal pathogens leaf rust, stripe rust, and powdery mildew. In previous studies, this broad-spectrum resistance was shown to be controlled by a single gene which encodes a putative ATP-binding cassette transporter. Alleles of resistant and susceptible cultivars differed by only three sequence polymorphisms and the same resistance haplotype was found in the three independent breeding lineages of Lr34/Yr18/Pm38. Hence, we used these conserved sequence polymorphisms as templates to develop diagnostic molecular markers that will assist selection for durable multi-pathogen resistance in breeding programs. Five allele-specific markers (cssfr1cssfr5) were developed based on a 3 bp deletion in exon 11 of the Lr34-gene, and one marker (cssfr6) was derived from a single nucleotide polymorphism in exon 12. Validation of reference genotypes, well characterized for the presence or absence of the Lr34/Yr18/Pm38 resistance locus, demonstrated perfect diagnostic values for the newly developed markers. By testing the new markers on a larger set of wheat cultivars, a third Lr34 haplotype, not described so far, was discovered in some European winter wheat and spelt material. Some cultivars with uncertain Lr34 status were re-assessed using the newly derived markers. Unambiguous identification of the Lr34 gene aided by the new markers has revealed that some wheat cultivars incorrectly postulated as having Lr34 may possess as yet uncharacterised loci for adult plant leaf and stripe rust resistance. E. S. Lagudah and S. G. Krattinger contributed equally to the work.  相似文献   

14.
15.
The common wheat genotype ‘RL6077’ was believed to carry the gene Lr34/Yr18 that confers slow-rusting adult plant resistance (APR) to leaf rust and stripe rust but located to a different chromosome through inter-chromosomal reciprocal translocation. However, haplotyping using the cloned Lr34/Yr18 diagnostic marker and the complete sequencing of the gene indicated Lr34/Yr18 is absent in RL6077. We crossed RL6077 with the susceptible parent ‘Avocet’ and developed F3, F4 and F6 populations from photoperiod-insensitive F3 lines that were segregating for resistance to leaf rust and stripe rust. The populations were characterized for leaf rust resistance at two Mexican sites, Cd. Obregon during the 2008–2009 and 2009–2010 crop seasons, and El Batan during 2009, and for stripe rust resistance at Toluca, a third Mexican site, during 2009. The F3 population was also evaluated for stripe rust resistance at Cobbitty, Australia, during 2009. Most lines had correlated responses to leaf rust and stripe rust, indicating that either the same gene, or closely linked genes, confers resistance to both diseases. Molecular mapping using microsatellites led to the identification of five markers (Xgwm165, Xgwm192, Xcfd71, Xbarc98 and Xcfd23) on chromosome 4DL that are associated with this gene(s), with the closest markers being located at 0.4 cM. In a parallel study in Canada using a Thatcher × RL6077 F3 population, the same leaf rust resistance gene was designated as Lr67 and mapped to the same chromosomal region. The pleiotropic, or closely linked, gene derived from RL6077 that conferred stripe rust resistance in this study was designated as Yr46. The slow-rusting gene(s) Lr67/Yr46 can be utilized in combination with other slow-rusting genes to develop high levels of durable APR to leaf rust and stripe rust in wheat.  相似文献   

16.
为了明确河南省小麦品种的抗叶锈性及抗叶锈基因的分布,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据,本研究利用2015年采自河南省的5个小麦叶锈菌流行小种混合菌株,对近几年河南省16个主栽小麦品种进行了苗期抗性鉴定,然后选用12个小麦叶锈菌生理小种对这些品种进行苗期基因推导,同时利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对该16个品种进行了抗叶锈基因分子检测。结果显示,供试品种苗期对小麦叶锈菌混合流行小种均表现高度感病;基因推导与分子检测结果表明,供试品种可能含有Lr1、Lr16、Lr26和Lr30这4个抗叶锈基因,其中先麦8号含有Lr1和Lr26;郑麦366和郑麦9023含有Lr1;西农979和怀川916含有Lr16;中麦895、偃展4110、郑麦7698、平安8号、众麦1号、周麦16、衡观35和矮抗58含有Lr26;周麦22中含有Lr26,还可能含有Lr1和Lr30;豫麦49-198和洛麦23可能含有本研究中检测以外的其他抗叶锈基因。因此,河南省主栽小麦品种的抗叶锈基因丰富度较低,今后育种工作应注重引入其他抗叶锈性基因,提高抗叶锈性,有效控制小麦叶锈病。  相似文献   

17.
Resistance based on slow-rusting genes has proven to be a useful strategy to develop wheat cultivars with durable resistance to rust diseases in wheat. However this type of resistance is often difficult to incorporate into a single genetic background due to the polygenic and additive nature of the genes involved. Therefore, markers, both molecular and phenotypic, are useful tools to facilitate the use of this type of resistance in wheat breeding programs. We have used field assays to score for both leaf and yellow rust in an Avocet-YrA × Attila population that segregates for several slow-rusting leaf and yellow rust resistance genes. This population was analyzed with the AFLP technique and the slow-rusting resistance locus Lr46/Yr29 was identified. A common set of AFLP and SSR markers linked to the Lr46/Yr29 locus was identified and validated in other recombinant inbred families developed from single chromosome recombinant populations that segregated for Lr46. These populations segregated for leaf tip necrosis (LTN) in the field, a trait that had previously been associated with Lr34/Yr18. We show that LTN is also pleiotropic or closely linked to the Lr46/Yr29 locus and suggest that a new Ltn gene designation should be given to this locus, in addition to the one that already exists for Lr34/Yr18. Coincidentally, members of a small gene family encoding β-1 proteasome subunits located on group 1L and 7S chromosomes implicated in plant defense were linked to the Lr34/Yr18 and Lr46/Yr29 loci.  相似文献   

18.
In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.  相似文献   

19.
Leaf rust is one of the most important diseases of wheat worldwide, particularly in the Great Plains region of the USA. One long-term strategy for the control of this disease may be through durable genetic resistance by gene pyramiding. An important step in this strategy is identifying molecular markers linked to different leaf rust-resistance genes. Here we report the molecular tagging of a leaf rust-resistance gene that may have the potential for durable resistance through further genetic manipulation and gene pyramiding. Lr39 was previously designated for a leaf rust-resistance gene introgressed from Aegilops tauschii accession TA1675 into the common wheat germplasm WGRC2. Lr40 was designated for a gene derived from Ae. tauschii accession TA1649 and is present in germplasm WGRC7. These genes are now believed to be allelic to Lr21, which was transferred to wheat from a different accession of Ae. tauschii. Molecular mapping of Lr39 and Lr40 indicates that both genes come from TA1649. WGRC2 and WRGC7 also have a similar infection type against rust culture PRTUS6. We suggest the designation of the gene in WGRC2 should be changed to Lr40. RFLP marker KSUD14 (locus Xksud14) was found 0.2-cM proximal to Lr40 in a WGRC2/Wichita F2 population (218 individuals), and co-segregated with the gene in a WGRC7/ Wichita F2 population (165 individuals). A PCR-based molecular marker developed from the sequence-tagged-site (STS) of Xksud14 was mapped to the same locus as the RFLP marker KSUD14 in both populations. KSUD14 has the structure of a resistance gene analog (RGA) including kinase2a and kinase3 domains similar to the Cre3 gene of wheat and the rust resistance gene Rp1-D of maize. When the PCR products amplified from KSU14 STS were cleaved with restriction enzyme MspI, an 885-bp fragment was found in WGRC2, WGRC7, the Lr21 near-isogenic line, and eight accessions of Ae. tauschii shown to have resistance gene alleles at the Lr21 locus. The KSUD14 PCR-based assay provides an excellent marker for Lr40 and Lr21 in diverse wheat breeding and wild Ae. tauschii populations. Received: 22 December 2000 / Accepted: 12 February 2001  相似文献   

20.
The Lr34/Yr18 locus has contributed to durable, non-race specific resistance against leaf rust (Puccinia triticina) and stripe rust (P. striiformis f. sp. tritici) in wheat (Triticum aestivum). Lr34/Yr18 also cosegregates with resistance to powdery mildew (Pm38) and a leaf tip necrosis phenotype (Ltn1). Using a high resolution mapping family from a cross between near-isogenic lines in the “Thatcher” background we demonstrated that Lr34/Yr18 also cosegregated with stem rust resistance in the field. Lr34/Yr18 probably interacts with unlinked genes to provide enhanced stem rust resistance in “Thatcher”. In view of the relatively low levels of DNA polymorphism reported in the Lr34/Yr18 region, gamma irradiation of the single chromosome substitution line, Lalbahadur(Parula7D) that carries Lr34/Yr18 was used to generate several mutant lines. Characterisation of the mutants revealed a range of highly informative genotypes, which included variable size deletions and an overlapping set of interstitial deletions. The mutants enabled a large number of wheat EST derived markers to be mapped and define a relatively small physical region on chromosome 7DS that carried Lr34/Yr18. Fine scale genetic mapping confirmed the physical mapping and identified a genetic interval of less than 0.5 cM, which contained Lr34/Yr18. Both rice and Brachypodium genome sequences provided useful information for fine mapping of ESTs in wheat. Gene order was more conserved between wheat and Brachypodium than with rice but these smaller grass genomes did not reveal sequence information that could be used to identify a candidate gene for rust resistance in wheat. We predict that Lr34/Yr18 is located within a large insertion in wheat not found at syntenic positions in Brachypodium and rice. W. Spielmeyer and R. P. Singh contributed equally to the study through the “Thatcher” and “Lalbahadur” genetic stocks, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号