首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Proteins with the A20/AN1 zinc-finger domain are present in all eukaryotes and are well characterized in animals, but little is known about their function in plants. Earlier, we have identified an A20/AN1 zinc-finger containing stress associated protein 1 gene (SAP1) in rice and validated its function in abiotic stress tolerance. In this study, genome-wide survey of genes encoding proteins possessing A20/AN1 zinc-finger, named SAP gene family, has been carried out in rice and Arabidopsis. The genomic distribution and gene architecture as well as domain structure and phylogenetic relationship of encoded proteins numbering 18 and 14 in rice and Arabidopsis, respectively, have been studied. Expression analysis of the rice SAP family was done to investigate their response under abiotic stress conditions. All the genes were inducible by one or the other abiotic stresses indicating that the OsSAP gene family is an important component of stress response in rice. Manipulation of their expression and identification of their superior alleles should help confer stress tolerance in target crops.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

3.
Environmental constraints that include abiotic stress factors such as salt, drought, cold and extreme temperatures severely limit crop productivity. Improvement of crop plants with traits that confer tolerance to these stresses was practiced using traditional and modern breeding methods. Molecular breeding and genetic engineering contributed substantially to our understanding of the complexity of stress response. Mechanisms that operate signal perception, transduction and downstream regulatory factors are now being examined and an understanding of cellular pathways involved in abiotic stress responses provide valuable information on such responses. This review presents genomic-assisted methods which have helped to reveal complex regulatory networks controlling abiotic stress tolerance mechanisms by high-throughput expression profiling and gene inactivation techniques. Further, an account of stress-inducible regulatory genes which have been transferred into crop plants to enhance stress tolerance is discussed as possible modes of integrating information gained from functional genomics into knowledge-based breeding programs. In addition, we envision an integrative genomic and breeding approach to reveal developmental programs that enhance yield stability and improve grain quality under unfavorable environmental conditions of abiotic stresses.  相似文献   

4.
5.
6.
7.
Growing in their natural environment, plants often encounter unfavorable environmental conditions that interrupt normal plant growth and productivity. Drought, high/low temperature and saline soils are the most common abiotic stresses that plants encounter in their natural environments. Molecular and genomic analyses have facilitated gene discovery and enabled genetic engineering using several functional or regulatory genes that are known to be involved in stress response and preliminary tolerance, to activate specific or broad pathways related to abiotic stress tolerance in plants. Through the use of transgenic technology, goals such as production of plants with desired traits that were unattainable with traditional selection programs are achieved. This review deals with recent advancement in understanding the role of various stress responsive genes and their critical importance for explaining the control mechanism of abiotic stress tolerance and engineering stress tolerant crops based on the expression of specific stress related genes.  相似文献   

8.
Rising global demand for food and population increases are driving the need for improved crop productivity over the next 30 years. Plants have inherent metabolic limitations on productivity such as inefficiencies in carbon fixation and sensitivity to environmental conditions. Bacteria and archaea inhabit some of the most inhospitable environments on the planet and possess unique metabolic pathways and genes to cope with these conditions. Microbial genes involved in carbon fixation, abiotic stress tolerance, and nutrient acquisition have been utilized in plants to enhance plant phenotypes by increasing yield, photosynthesis, and abiotic stress tolerance. Transgenic plants expressing bacterial and archaeal genes will be discussed along with emerging strategies and tools to increase plant growth and yield.  相似文献   

9.
10.
脯氨酸在植物生长和非生物胁迫耐受中的作用   总被引:22,自引:0,他引:22  
脯氨酸是生物界分布最广的渗透保护物质之一,干旱、高盐、高温及重金属等非生物胁迫条件都会导致植物体内脯氨酸含量的增加,其作用是防止渗透胁迫对植物造成的伤害、清除自由基,还可以作为氮、碳以及NADPH的重要来源。近年来,在转化脯氨酸代谢相关基因提高植物胁迫抗性方面也取得了很大进展。本文概要介绍了脯氨酸在植物生长和耐受非生物胁迫中的作用、与植物脯氨酸累积有关的信号转导、胁迫条件下脯氨酸的吸收和器官间的运输途径,以及通过转基因技术过量表达脯氨酸提高植物胁迫耐性的代谢工程的进展。  相似文献   

11.
The functional elucidation of plant cell wall biosynthesis (CWB) related genes is important for understanding various stress tolerance responses as well as enhancing biomass in plants. Despite their significant role in physiology and growth of the plant, the function of a limited number of CWB related genes have been identified. Major obstacles such as functional redundancy and limited functional information pose challenges in the characterization of CWB genes. Here, a genome-wide analysis of CWB genes using meta-expression data revealed their roles in stress tolerance and developmental processes. The identification of coexpressed CWB genes suggests functional modules for plant cell wall biosynthesis associated with specific tissue types, biotic stress, abiotic stress, and hormone responses. More interestingly, we identified that glycosyl hydrolases are specialized for root and pollen development, glycosyltransferases for ubiquitous function and leaf development, and carbohydrate esterases for pollen development. A T-DNA insertional mutant of OsCESA9 showing internode preferred expression revealed severe dwarfism and a co-expression network analysis of OsCESA9 in oscesa9 mutant suggest downstream pathways for secondary cell wall biosynthesis and DNA repair processes. Data from our studies will facilitate functional genomic studies of CWB genes in rice and contribute to the enhancement of biomass and yield in crop plants.  相似文献   

12.
13.
Raffinose family oligosaccharides (RFO) accumulating during seed development are thought to play a role in the desiccation tolerance of seeds. However, the functions of RFO in desiccation tolerance have not been elucidated. Here we examine the functions of RFO in Arabidopsis thaliana plants under drought- and cold-stress conditions, based on the analyses of function and expression of genes involved in RFO biosynthesis. Sugar analysis showed that drought-, high salinity- and cold-treated Arabidopsis plants accumulate a large amount of raffinose and galactinol, but not stachyose. Raffinose and galactinol were not detected in unstressed plants. This suggests that raffinose and galactinol are involved in tolerance to drought, high salinity and cold stresses. Galactinol synthase (GolS) catalyses the first step in the biosynthesis of RFO from UDP-galactose. We identified three stress-responsive GolS genes (AtGolS1, 2 and 3) among seven Arabidopsis GolS genes. AtGolS1 and 2 were induced by drought and high-salinity stresses, but not by cold stress. By contrast, AtGolS3 was induced by cold stress but not by drought or salt stress. All the GST fusion proteins of GST-AtGolS1, 2 and 3 expressed in Escherichia coli had galactinol synthase activities. Overexpression of AtGolS2 in transgenic Arabidopsis caused an increase in endogenous galactinol and raffinose, and showed reduced transpiration from leaves to improve drought tolerance. These results show that stress-inducible galactinol synthase plays a key role in the accumulation of galactinol and raffinose under abiotic stress conditions, and that galactinol and raffinose may function as osmoprotectants in drought-stress tolerance of plants.  相似文献   

14.
15.
16.
? The inbuilt mechanisms of plant survival have been exploited for improving tolerance to abiotic stresses. Stress-associated proteins (SAPs), containing A20/AN1 zinc-finger domains, confer abiotic stress tolerance in different plants, however, their interacting partners and downstream targets remain to be identified. ? In this study, we have investigated the subcellular interactions of rice SAPs and their interacting partner using yeast two-hybrid and fluorescence resonance energy transfer (FRET) approaches. Their efficacy in improving abiotic stress tolerance was analysed in transgenic Arabidopsis plants. Regulation of gene expression by genome-wide microarray in transgenics was used to identify downstream targets. ? It was found that the A20 domain mediates the interaction of OsSAP1 with self, its close homolog OsSAP11 and a rice receptor-like cytoplasmic kinase, OsRLCK253. Such interactions between OsSAP1/11 and with OsRLCK253 occur at nuclear membrane, plasma membrane and in nucleus. Functionally, both OsSAP11 and OsRLCK253 could improve the water-deficit and salt stress tolerance in transgenic Arabidopsis plants via a signaling pathway affecting the expression of several common endogenous genes. ? Components of a novel stress-responsive pathway have been identified. Their stress-inducible expression provided the protection against yield loss in transgenic plants, indicating the agronomic relevance of OsSAP11 and OsRLCK253 in conferring abiotic stress tolerance.  相似文献   

17.
18.
Chickpea (Cicer arietinum L.) is an important food legume crop, particularly for the arid regions including Indian subcontinent. Considering the detrimental effect of drought, temperature and salt stress on crop yield, efforts have been initiated in the direction of developing improved varieties and designing alternate strategies to sustain chickpea production in adverse environmental conditions. Identification of genes that confer abiotic stress tolerance in plants remains a challenge in contemporary plant breeding. The present study focused on the identification of abiotic stress responsive genes in chickpea based on sequence similarity approach exploiting known abiotic stress responsive genes from model crops or other plant species. Ten abiotic stress responsive genes identified in other plants were partially amplified from eight chickpea genotypes and their presence in chickpea was confirmed after sequencing the PCR products. These genes have been functionally validated and reported to play significant role in stress response in model plants like Arabidopsis, rice and other legume crops. Chickpea EST sequences available at NCBI EST database were used for the identification of abiotic stress responsive genes. A total of 8,536 unique coding long sequences were used for identification of chickpea homologues of these abiotic stress responsive genes by sequence similarity search (BLASTN and BLASTX). These genes can be further explored towards achieving the goal of developing superior chickpea varieties providing improved yields under stress conditions using modern molecular breeding approaches.  相似文献   

19.
非生物胁迫相关NAC转录因子的结构及功能   总被引:2,自引:0,他引:2  
NAC是植物特有的一类转录因子,参与植物多个生长发育过程,还参与植物对逆境胁迫的响应。本文对非生物胁迫相关NAC转录因子的结构特征、功能预测、表达特性、在转基因植物中的作用及调控路径进行综述。非生物胁迫相关NAC转录因子具有典型的NAc胁迫亚家族结构特征,根据这些结构特征可以预测其功能;非生物胁迫相关NAc转录因子能响应多种非生物胁迫,其转基因过表达大多能使转基因植物提高一种或几种胁迫耐受性;非生物胁迫相关NAc转录因子有着复杂的调控路径。这些NAc转录因子可用于提高转基因植物的逆境耐受性。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号