首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Six leucine auxotrophic strains of the white rot basidiomycete Phanerochaete chrysosporium were characterized genetically and biochemically. Complementation studies involving the use of heterokaryons identified three leucine complementation groups. Since all of the leucine auxotrophs grew on minimal medium supplemented with α-ketoisocaproate as well as with leucine, the transaminase catalyzing the last step in the leucine pathway was apparently normal in all strains. Therefore, the wild-type, auxotrophic, and several heterokaryotic strains were assayed for the activities of the other enzymes specific to leucine biosynthesis. Leu2 and Leu4 strains (complementation group I) lacked only α-isopropylmalate synthase activity; Leu3 and Leu6 strains (group III) lacked isopropylmalate isomerase activity; and Leu1 and Leu5 strains (group II) lacked β-isopropylmalate dehydrogenase. Heterokaryons formed from leucine auxotrophs of different complementation groups had levels of activity for all three enzymes similar to those found in the wild-type strain.  相似文献   

3.
Heterokaryons made from auxotrophic strains of the lignin-degrading basidiomycete Phanerochaete chrysosporium were induced to fruit. The isolation of wild-type and double-mutant phenotypes from these crosses indicated that genetic recombination had occurred. Cytological studies demonstrated that more than 90% of the basidiospores from the wild-type and auxotrophic strains and from forced heterokaryons were binucleate. Colonies of the wild-type strain of P. chrysosporium arising from single, predominantly uninucleate conidia were all capable of producing fruit bodies and basidiospores.  相似文献   

4.
A method of meiotic segregation analysis based on recombinant selection in the homothallic basidiomycete Phanerochaete chrysosporium was developed. Using this method, we were able to reveal linkage relationships and to estimate recombination frequencies between seven mutations to auxotrophy. We detected two linkage groups, the first containing four and the second three of the seven mapped mutations.  相似文献   

5.
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.  相似文献   

6.
Prototrophic strains recovered from crosses between auxotrophic strains of the lignin-degrading basidiomycete Phanerochaete chrysosporium were induced to fruit. The progeny of most of these self-crosses were prototrophic, indicating that the nuclei of the original prototroph were wild-type recombinants rather than complementary heterokaryons and that the binucleate basidiospores of this organism are homokaryotic. Various wild-type strains were shown to have multinucleate cells lacking clamp connections and to possess a variable number of sterigmata per basidium. Colonies arising from single conidia of various wild-type strains were all capable of producing fruit bodies and basidiospores. In addition, single basidiospores from three wild-type strains all produced fruit bodies and basidiospores. Nonfruiting as well as fruiting isolates were obtained from single basidiospores of five other wild-type strains. Basidiospores from these fruiting isolates always yielded colonies that fruited, again indicating that the spores are homokaryotic. Nonfruiting isolates from the same strain did not produce basidiospores when allowed to form a heterokaryon, implying that these isolates do not represent mating types. All this evidence indicates that P. chrysosporium has a primary homothallic mating system. In addition to fruiting and nonfruiting phenotypes, basidiospores from strain OGC101, a derivative of ME-446, gave rise to colonies which did not grow on cellulose (Cel). The fruiting, nonfruiting, and Cel phenotypes differed from each other and from the parental wild-type strain in a variety of characteristics, including growth, conidiation, and evolution of 14CO2 from 14C-side chain-labeled lignin, indicating that strain OCG101 is a heterokaryon.  相似文献   

7.
黄孢原毛平革菌基因启动子的分离与鉴定   总被引:6,自引:0,他引:6  
利用启动子探针型载体pSUPV8直接在大肠杆菌(Escherichia coli)中分离黄孢原毛平革菌(Phanerochaete chrysosporium)基因启动子片段,获得6个潮霉素抗性(Hyg-r)重组子。对重组子CH2、CH6进行序列分析,结果发现它们都存在真核生物基因启动子的保守序列;用原生质体转化法将其转化黄孢原毛平革菌,仅pCH6获得了潮霉素抗性转化子;PCR和斑点杂交分析表明,pCH6已成功导入黄孢原毛平革菌,并启动潮霉素抗性基因的表达。  相似文献   

8.
Extracellular (beta)-glucosidase from cellulose-degrading cultures of Phanerochaete chrysosporium was purified by DEAE-Sephadex chromatography, by Sephacryl S-200 chromatography, and by fast protein liquid chromatography (FPLC) using a Mono Q anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of FPLC-purified (beta)-glucosidase indicated the presence of three enzyme forms with molecular weights of 96,000, 98,000, and 114,000. On further fractionation with a microcrystalline cellulose column, the 114,000-molecular-weight (beta)-glucosidase, which had 82% of the (beta)-glucosidase activity, was bound to cellulose. The (beta)-glucosidases with molecular weights of 96,000 and 98,000 did not bind to cellulose. The cellulose-bound (beta)-glucosidase was eluted completely from the cellulose matrix with water. Cellulose-bound (beta)-glucosidase catalyzed p-nitrophenylglucoside hydrolysis, suggesting that the catalytic site is not involved in cellulose binding. When the cellulose-binding form was incubated with papain for 20 h, no decrease in the enzyme activity was observed; however, approximately 74% of the papain-treated glucosidase did not bind to microcrystalline cellulose. SDS-PAGE analysis of the nonbinding glucosidase produced by papain indicated the presence of three bands with molecular weights in the range of 95,000 to 97,000. On the basis of these results, we propose that the low-molecular-weight (96,000 and 98,000) non-cellulose-binding (beta)-glucosidase forms are most probably formed from the higher-molecular-weight (114,000) cellulose-binding (beta)-glucosidase via extracellular proteolytic hydrolysis. Also, it appears that the extracellular (beta)-glucosidase from P. chrysosporium might be organized into two domains, a cellulose-binding domain and a catalytic domain. Kinetic characterization of the cellulose-binding form is also presented.  相似文献   

9.
The polymeric dyes Poly B-411, Poly R-481, and Poly Y-606 were examined as possible alternatives to the radiolabeled lignin previously used as a substrate in lignin biodegradation assays. Like lignin degradation, the decolorization of these dyes by the white rot basidiomycete Phanerochaete chrysosporium occurred during secondary metabolism, was suppressed in cultures grown in the presence of high levels of nitrogen, and was strongly dependent on the oxygen concentration in the cultures. A variety of inhibitors of lignin degradation, including thiourea, azide, and 4′-O-methylisoeugenol, also inhibited dye decolorization. A pleiotropic mutant of P. chrysosporium, 104-2, lacking phenol oxidase and ligninolytic activity was also not able to decolorize the polymeric dyes, whereas a phenotypic revertant strain, 424-2, regained this capacity. All of these results suggest that the ligninolytic degradation activity of the fungus was responsible for the decolorization of these dyes.  相似文献   

10.
It has been widely reported that the white rot basidiomycete Phanerochaete chrysosporium, unlike most other white rot fungi, does not produce laccase, an enzyme implicated in lignin biodegradation. Our results showed that P. chrysosporium BKM-F1767 produces extracellular laccase in a defined culture medium containing cellulose (10 g/liter) and either 2.4 or 24 mM ammonium tartrate. Laccase activity was demonstrated in the concentrated extracellular culture fluids of this organism as determined by a laccase plate assay as well as a spectrophotometric assay with ABTS [2,2(prm1)-azinobis(3-ethylbenzathiazoline-6-sulfonic acid)] as the substrate. Laccase activity was observed even after addition of excess catalase to the extracellular culture fluid to destroy the endogenously produced hydrogen peroxide, indicating that the observed activity is not due to a peroxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by activity staining with ABTS revealed the presence of a laccase band with an estimated M(infr) of 46,500.  相似文献   

11.
A variety of auxotrophic strains of Phanerochaete chrysosporium were isolated after treatment of conidia with UV and X rays. Complementation studies with these strains demonstrated heterokaryotic mycelia and conidia in this organism. Nuclear staining also showed that conidia can be mono-, di-, or multinucleate. Complementation tests allowed the separation of each auxotrophic class with the same phenotype into complementation groups.  相似文献   

12.
13.
Swollen basidiospores of an adenine auxotroph of Phanerochaete chrysosporium were protoplasted with Novozyme 234 and transformed to prototrophy by using a plasmid containing the gene for an adenine biosynthetic enzyme from Schizophyllum commune. Transformation frequencies of 100 transformants per μg of DNA were obtained. Southern blot analysis of DNA extracted from transformants demonstrated that plasmid DNA was integrated into the chromosomal DNA in multiple tandem copies. Analysis of conidia and basidiospores from transformants demonstrated that the transforming character was mitotically and meiotically stable on both selective and nonselective media. Genetic crosses between double mutants transformed for adenine prototrophy and other auxotrophic strains yielded Ade progeny, which indicated that integration occurred at a site(s) other than the resident adenine biosynthetic gene.  相似文献   

14.
Two cDNA clones encoding lignin peroxidase isozymes from Phanerochaete chrysosporium have been isolated and characterized. One of the clones, lambda ML-4, encodes isozyme H8 as does the previously reported clone lambda ML-1 [Tien, M. and Tu, C.-P.D. Nature 326 (1987) 520-523; 328, 742]. Our data are consistent with lambda ML-1 and lambda ML-4 being allelic variants. The other clone, lambda ML-5, encodes a homologous isozyme. We have also isolated the genomic clone corresponding to lambda ML-4 cDNA. Conserved residues thought to be essential for peroxidase function were identified in the predicted amino acid sequences of both cDNA clones. Northern blot analyses indicate that these isozymes are expressed during secondary metabolism, appearing on day 4 of growth and increasing on days 5 and 6.  相似文献   

15.
16.
17.
A trehalose synthase (TSase) that catalyzes the synthesis of trehalose from d-glucose and α-d-glucose 1-phosphate (α-d-glucose 1-P) was detected in a basidiomycete, Grifola frondosa. TSase was purified 106-fold to homogeneity with 36% recovery by ammonium sulfate precipitation and several steps of column chromatography. The native enzyme appears to be a dimer since it has apparent molecular masses of 120 kDa, as determined by gel filtration column chromatography, and 60 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Although TSase catalyzed the phosphorolysis of trehalose to d-glucose and α-d-glucose 1-P, in addition to the synthesis of trehalose from the two substrates, the TSase equilibrium strongly favors trehalose synthesis. The optimum temperatures for phosphorolysis and synthesis of trehalose were 32.5 to 35°C and 35 to 37.5°C, respectively. The optimum pHs for these reactions were 6.5 and 6.5 to 6.8, respectively. The substrate specificity of TSase was very strict: among eight disaccharides examined, only trehalose was phosphorolyzed, and only α-d-glucose 1-P served as a donor substrate with d-glucose as the acceptor in trehalose synthesis. Two efficient enzymatic systems for the synthesis of trehalose from sucrose were identified. In system I, the α-d-glucose 1-P liberated by 1.05 U of sucrose phosphorylase was linked with d-glucose by 1.05 U of TSase, generating trehalose at the initial synthesis rate of 18 mmol/h in a final yield of 90 mol% under optimum conditions (300 mM each sucrose and glucose, 20 mM inorganic phosphate, 37.5°C, and pH 6.5). In system II, we added 1.05 U of glucose isomerase and 20 mM MgSO4 to the reaction mixture of system I to convert fructose, a by-product of the sucrose phosphorylase reaction, into glucose. This system generated trehalose at the synthesis rate of 4.5 mmol/h in the same final yield.Trehalose (1-α-d-glucopyranosyl-α-d-glucopyranoside) is a nonreducing disaccharide with an α,α-1,1 glycosidic linkage and is widely distributed in plants, insects, fungi, yeast, and bacteria (7). Due to the absence of reducing ends in trehalose, it is highly resistant to heat, pH, and Maillard’s reaction (24). In trehalose-producing organisms, this compound may serve as an energy reserve, a buffer against stresses such as desiccation and freezing, and a protein stabilizer (5, 7, 26, 31, 32). If trehalose can be produced economically, then it has potential commercial applications as a sweetener, a food stabilizer, and an additive in cosmetics and pharmaceuticals (6, 25). Recently, trehalose production through fermentation of yeast (17) and Corynebacterium (30), enzymatic processes from starch (18, 34) and maltose (19, 22, 23, 33), and extraction from transformed plants (10) has been reported.Our approach to trehalose production is to use an enzymatic process to produce trehalose from sucrose, one of the least expensive sugars. Since sucrose is efficiently converted to α-d-glucose 1-phosphate (α-d-glucose 1-P) and fructose by sucrose phosphorylase (SPase), we screened microorganisms for an enzyme that converts α-d-glucose 1-P to trehalose on the assumption that the combination of the putative trehalose synthase (TSase) and SPase would convert sucrose into trehalose. Although similar enzyme activities have been reported in the basidiomycete Flammulina velutipes (11) and in the yeast Pichia fermentans (27), these enzymes have not been well characterized.Our objectives were (i) to screen microorganisms, primarily fungi, for TSase activity; (ii) to purify and characterize the TSase; (iii) to identify the enzymatic process by which trehalose is produced from sucrose; and (iv) to identify an enzymatic process for production of trehalose from sucrose in which the fructose component is also converted to trehalose.  相似文献   

18.
S Rieble  D K Joshi    M H Gold 《Journal of bacteriology》1994,176(16):4838-4844
1,2,4-Trihydroxybenzene (THB) is an intermediate in the Phanerochaete chrysosporium degradation of vanillate and aromatic pollutants. A P. chrysosporium intracellular enzyme able to oxidatively cleave the aromatic ring of THB was purified by ammonium sulfate precipitation, hydrophobic and ion-exchange chromatographies, and native gel electrophoresis. The native protein has a molecular mass of 90 kDa and a subunit mass of 45 kDa. The enzyme catalyzes an intradiol cleavage of the substrate aromatic ring to produce maleylacetate. 18O2 incorporation studies demonstrate that molecular oxygen is a cosubstrate in the reaction. The enzyme exhibits high substrate specificity for THB; however, catechol cleavage occurs at approximately 20% of the optimal rate. THB dioxygenase catalyzes a key step in the degradation pathway of vanillate, an intermediate in lignin degradation. Maleylacetate, the product of THB cleavage, is reduced to beta-ketoadipate by an NADPH-requiring enzyme present in partially purified extracts.  相似文献   

19.
Manganese peroxidase (MnP) is one of two extracellular peroxidases believed to be involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. The enzyme oxidizes Mn(II) to Mn(III), which accumulates in the presence of Mn(III) stabilizing ligands. The Mn(III) complex in turn can oxidize a variety of organic substrates. The stoichiometry of Mn(III) complex formed per hydrogen peroxide consumed approaches 2:1 as enzyme concentration increases at a fixed concentration of peroxide or as peroxide concentration decreases at a fixed enzyme concentration. Reduced stoichiometry below 2:1 is shown to be due to Mn(III) complex decomposition by hydrogen peroxide. Reaction of Mn(III) with peroxide is catalyzed by Cu(II), which explains an apparent inhibition of MnP by Cu(II). The net decomposition of hydrogen peroxide to form molecular oxygen also appears to be the only observable reaction in buffers that do not serve as Mn(III) stabilizing ligands. The nonproductive decomposition of both Mn(III) and peroxide is an important finding with implications for proposed in vitro uses of the enzyme and for its role in lignin degradation. Steady-state kinetics of Mn(III) tartrate and Mn(III) malate formation by the enzyme are also described in this paper, with results largely corroborating earlier findings by others. Based on a comparison of pH effects on the kinetics of enzymatic Mn(III) tartrate and Mn(III) malate formation, it appears that pH effects are not due to ionizations of the Mn(III) complexing ligand.  相似文献   

20.
An intracellular aryl-alcohol dehydrogenase (previously referred to as aryl-aldehyde reductase) was purified from the white-rot fungus Phanerochaete chrysosporium. The enzyme reduced veratraldehyde to veratryl alcohol using NADPH as a cofactor. Other aromatic benzaldehydes were also reduced, but not aromatic ketones. Methoxy-substituted rings were better substrates than hydroxylated ones. The enzyme was also able to reduce a dimeric aldehyde (4-benzyloxy-3-methoxybenzaldehyde). The highest reduction rate was measured when 3,5-dimethoxybenzaldehyde was used as a substrate. On SDS/PAGE the purified enzyme showed one major band with a molecular mass of 47 kDa, whereas gel filtration suggested a molecular mass of 280 kDa. Polyclonal antibodies raised against the gel purified 47-kDa protein were able to immunoprecipitate the aryl-alcohol dehydrogenase indicating that its activity possibly resides entirely in this protein fragment. The pI of the enzyme was 5.2 and it was most active at pH 6.1. The aryl-alcohol dehydrogenase was partially inhibited by typical oxidoreductase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号