首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The O2 sensor that triggers hypoxic pulmonary vasoconstriction may be sensitive not only to alveolar hypoxia but also to hypoxia in mixed venous blood. A specific test of the blood contribution would be to lower mixed venous PO2 (PvO2), which can be accomplished by increasing hemoglobin-O2 affinity. When we exchanged transfused rats with cyanate-treated erythrocytes [PO2 at 50% hemoglobin saturation (P50) = 21 Torr] or with Créteil erythrocytes (P50 = 13.1 Torr), we lowered PvO2 from 39 +/- 5 to 25 +/- 4 and to 14 +/- 4 Torr, respectively, without altering arterial blood gases or hemoglobin concentration. Right ventricular systolic pressure increased from 32 +/- 2 to 36 +/- 3 Torr with cyanate erythrocytes and to 44 +/- 5 Torr with Créteil erythrocytes. Cardiac output was unchanged. Control exchange transfusions with normal rat or 2,3-diphosphoglycerate-enriched human erythrocytes had no effect on PvO2 or right ventricular pressure. Alveolar hypoxia plus high O2 affinity blood caused a greater increase in right ventricular systolic pressure than either stimulus alone. We concluded that PvO2 is an important determinant of pulmonary vascular tone in the rat.  相似文献   

2.
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1 and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure.  相似文献   

3.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

4.
Anatomic evidence suggests that leu5-enkephalin (Leu5-enk) may be involved in the physiologic control of pulmonary vascular tone. Information regarding its pulmonary vascular effect is limited; we therefore studied its effect on the immature pulmonary circulation. Normoxic and hypoxic unsedated newborn lambs with chronically implanted flow probes around the right and left pulmonary arteries were used. Leu5-enk was injected into one pulmonary artery only, so that any direct effect of the peptide on the pulmonary vessels could be determined by measuring changes in the ratio of blood flow to the injected versus the non-injected lung. Leu5-enk caused a small but significant increase in pulmonary artery pressure without increasing cardiac output or left atrial pressure (threshold = 1 microgram/kg); it is therefore a pulmonary vasoconstrictor. At a dose of 10 micrograms/kg, Leu5-enk also raised pulmonary artery pressure (20.6 mmHg to 23.9 mmHg; F(8,36) = 15.1 p less than 0.001) and calculated PAR (14.6 to 16.1 units; NS). However, the ratio of blood flow to the two lungs did not change; thus, Leu5-enk does not appear to directly act on pulmonary vessels, but rather through an intermediary to produce pulmonary vasoconstriction. This indirect pulmonary vasoconstriction was blocked by pretreatment with naloxone (3 mg/kg). We conclude that Leu5-enk is a pulmonary vasoconstrictor, albeit a weak one, in the lamb and may therefore play a role in pulmonary vascular homeostasis. This vasoconstriction does not seem to be due to a direct effect on pulmonary vessels by Leu5-enk, but may be effected through a neural or hormonal intermediary.  相似文献   

5.
Pulmonary arterial hypertension (PAH) is a disease affecting distal pulmonary arteries (PA). These arteries are deformed, leading to right ventricular failure. Current treatments are limited. Physiologically, pulsatile blood flow is detrimental to the vasculature. In response to sustained pulsatile stress, vessels release nitric oxide (NO) to induce vasodilation for self-protection. Based on this observation, this study developed a protocol to assess whether an artificial pulmonary pulsatile blood flow could induce an NO-dependent decrease in pulmonary artery pressure. One group of piglets was exposed to chronic hypoxia for 3 weeks and compared to a control group of piglets. Once a week, the piglets underwent echocardiography to assess PAH severity. At the end of hypoxia exposure, the piglets were subjected to a pulsatile protocol using a pulsatile catheter. After being anesthetized and prepared for surgery, the jugular vein of the piglet was isolated and the catheter was introduced through the right atrium, the right ventricle and the pulmonary artery, under radioscopic control. Pulmonary artery pressure (PAP) was measured before (T0), immediately after (T1) and 30 min after (T2) the pulsatile protocol. It was demonstrated that this pulsatile protocol is a safe and efficient method of inducing a significant reduction in mean PAP via an NO-dependent mechanism. These data open up new avenues for the clinical management of PAH.  相似文献   

6.
Pregnancy-associated increases in uterine artery (UA) blood flow are due, in part, to vasoactive and growth-related changes that enlarge UA diameter. Although active and passive mechanical factors can contribute to this enlargement, their role is less well understood. We hypothesized that pregnancy increased UA distensibility and/or decreased myogenic tone. Given the fetal growth restriction and lower UA flow seen under chronic hypoxia, we further hypothesized that chronic hypoxia opposed these normal active and passive mechanical changes. UA were isolated from 12 nonpregnant and 12 pregnant (0.7 gestation) guinea pigs housed under normoxia or chronic hypoxia (3,960 m) and studied by pressure myography. Pregnancy increased UA diameter similarly under normoxia and hypoxia. Although chronic hypoxia raised resting tone in UA from nonpregnant guinea pigs to approximately 20% and tone was greater in preconstricted pregnant chronically hypoxic vs. normoxic UA (both P<0.01), there was an absence of myogenic response (i.e., an increase in tone with rising pressure) in all groups. Pregnancy increased UA distensibility 1.5-fold but did not change stiffness or the stress-strain relationship. Compared with vessels from normoxic pregnant animals, hypoxic pregnancy raised UA distensibility fourfold, decreased stiffness (rate constant b=3.80+/-1.06 vs. 8.92+/-1.25, respectively, P<0.01), lowered elastin by 50%, and shifted the stress-strain relationship upward such that four times as much strain was present at a given stress. We concluded that increased distensibility and low myogenic tone contribute to enlarging UA diameter and raising UA blood flow during pregnancy. Chronic hypoxia exaggerates the rise in distensibility and alters the stress-strain relationship in ways that may provoke vascular injury.  相似文献   

7.
Isolated rat lungs were ventilated and perfused by saline-Ficoll perfusate at a constant flow. The baseline perfusion pressure (PAP) correlated with the concentration of 6-keto-PGF1 alpha the stable metabolite of PGI2 (r = 0.83) and with the 6-keto-PGF1 alpha/TXB2 ratio (r = 0.82). A bolus of 10 micrograms exogenous arachidonic acid (AA) injected into the arterial cannula of the isolated lungs caused significant decrease in pulmonary vascular resistance (PVR) which was followed by a progressive increase of PVR and edema formation. Changes in perfusion pressure induced by AA injection also correlated with concentrations of the stable metabolites (6-keto-PGF1 alpha: r = -0.77, TxB2: -0.76), and their ratio: (6-keto-PGF1 alpha/TXB2: r = -0.73). Injection of 10 and 100 micrograms of PGF2 alpha into the pulmonary artery stimulated the dose-dependent production of TXB2 and 6-keto-PGF1 alpha. No significant correlations were found between the perfusion pressure (PAP) which was increased by the PGF2 alpha and the concentrations of the former stable metabolites. The results show that AA has a biphasic effect on the isolated lung vasculature even in low dose. The most potent vasoactive metabolites of cyclooxygenase, prostacyclin and thromboxane A2 influence substantially not only the basal but also the increased tone of the pulmonary vessels.  相似文献   

8.
The gastrointestinal peptides glucagon-like peptide-1(7-36)amide (GLP-1) and amylin are currently being tested in clinical trials for the treatment of diabetes mellitus due to their effects in lowering blood glucose. Receptors for these polypeptides also exist in the lung and since polypeptides are known to modulate airway and pulmonary vascular tone, we investigated whether GLP-1 and amylin act similarly in the lung. We compared their effects with the well-known actions of calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP). Both GLP-1 and amylin induced a dose-dependent and time-reversible endothelial-dependent relaxation of preconstricted pulmonary artery rings. Amylin was approximately as strong as VIP and CGRP, GLP-1 however, was 2.3-fold less potent. GLP-1 as well as amylin also reduced the vascular tone in the isolated, perfused and ventilated rat lung. In contrast to their action on the pulmonary vasculature, neither GLP-1 nor amylin showed any effect on the tone of isolated preconstricted trachea rings. In conclusion, GLP-1 and amylin represent two additional peptides which may modulate pulmonary vascular tone.  相似文献   

9.
The time course of the pulmonary vascular response to hypoxia in humans has not been fully defined. In this investigation, study A was designed to assess the form of the increase in pulmonary vascular tone at the onset of hypoxia and to determine whether a steady plateau ensues over the following approximately 20 min. Twelve volunteers were exposed twice to 5 min of isocapnic euoxia (end-tidal Po(2) = 100 Torr), 25 min of isocapnic hypoxia (end-tidal Po(2) = 50 Torr), and finally 5 min of isocapnic euoxia. Study B was designed to look for the onset of a slower pulmonary vascular response, and, if possible, to determine a latency for this process. Seven volunteers were exposed to 5 min of isocapnic euoxia, 105 min of isocapnic hypoxia, and finally 10 min of isocapnic euoxia. For both studies, control protocols consisting of isocapnic euoxia were undertaken. Doppler echocardiography was used to measure cardiac output and the maximum tricuspid pressure gradient during systole, and estimates of pulmonary vascular resistance were calculated. For study A, the initial response was well described by a monoexponential process with a time constant of 2.4 +/- 0.7 min (mean +/- SE). After this, there was a plateau phase lasting at least 20 min. In study B, a second slower phase was identified, with vascular tone beginning to rise again after a latency of 43 +/- 5 min. These findings demonstrate the presence of two distinct phases of hypoxic pulmonary vasoconstriction, which may result from two distinct underlying processes.  相似文献   

10.
Effects of hypoxia on force development and membrane potential were studied in isolated small (less than 300 microns diam) and large (greater than 500 microns diam) pulmonary arteries from cats. There was a consistent and reproducible hypoxic constrictor response in small pulmonary arteries that began at PO2 values between 350 and 300 Torr and reached a maximum at PO2 between 50 and 30 Torr. In the small artery smooth muscle cell the membrane potential, which was -51 +/- 1.4 mV at a PO2 of 400 Torr, was depolarized to -37 +/- 2 mV at a PO2 of 50 Torr. In contrast, larger arteries did not exhibit significant hypoxic constriction or depolarization upon exposure to low PO2. Constriction in small arteries was not blocked by phentolamine. Treatment with a low dose of indomethacin (10(-9) M) augmented the response; however, a larger dose of indomethacin (10(-3) M) blocked the constriction to hypoxia but not to 30 mM KCl. Depolarization during hypoxia was not blocked by ouabain. Results of this study suggest that the hypoxic response of these isolated small pulmonary vessels may be like that seen in the intact lung. Furthermore, these data suggest that hypoxic vasoconstriction may be mediated by electrical events occurring at the pulmonary arterial muscle cell membrane either directly or via mediators released from the vessel wall.  相似文献   

11.
Endothelin produces pulmonary vasoconstriction and systemic vasodilation   总被引:4,自引:0,他引:4  
Endothelin is a newly described polypeptide derived from endothelial cells. The effects of porcine endothelin on the pulmonary vascular bed and systemic vascular bed were investigated in the anesthetized, intact-chest cat under conditions of constant pulmonary blood flow and left atrial pressure. Intralobar bolus injections of porcine endothelin (100-1000 ng) produced a mild vasoconstrictor response in the pulmonary vascular bed. The pulmonary vasoconstrictor response to endothelin was not altered when pulmonary vasomotor tone was increased by infusion of U46619. In contrast to this mild pulmonary vasoconstrictor response, endothelin decreased systemic arterial pressure. Moreover, injections of porcine endothelin into the right and left atria produced similar reductions in aortic pressure as well as similar increases in cardiac output and decreases in systemic vascular resistance. The systemic vasodilator response to porcine endothelin was not affected by beta 2-adrenoceptor blockade. The present data suggest that endothelin does not undergo significant first-pass pulmonary metabolism. The pulmonary vasoconstrictor response to bolus injections of porcine endothelin is not altered by changes in pulmonary vasomotor tone. In contrast, endothelin markedly dilated the systemic vascular bed independently of activation of beta 2-adrenoceptors. The present study provides the first report of the activity of endothelin on pulmonary and systemic hemodynamics in vivo. Moreover, the potent vasodilator activity of endothelin in the systemic vascular bed and its weak effect on pulmonary vessels suggest that endothelin may be more important in the regulation of peripheral vasomotor tone than the pulmonary vascular bed.  相似文献   

12.
This report describes the pulmonary vascular response of infant lamb lung to abrupt cessation of positive end-expiratory pressure (PEEP) during volume-regulated continuous positive-pressure breathing (CPPB). In an intact, endobronchially ventilated preparation, the increase in left lung blood flow (QL) after abrupt cessation of 11 Torr left lung PEEP was found to be gradual, although peak airway pressure (Pmax) fell promptly from 36 to 14 Torr; 49% of the increase in QL occurred greater than 10 s after cessation of PEEP. Recruitment of zone I vasculature that had been created by balloon occlusion of the left pulmonary artery was found to occur promptly after balloon deflation. Isolated neonatal lamb lungs, perfused at constant flow rate, showed similar persistent elevation of pulmonary vascular resistance after cessation of 15 Torr PEEP, although Pmax fell abruptly from 39 to 12 Torr. This hysteresis was eliminated by calcium channel blockade with verapamil, and the magnitude of the change in pulmonary arterial pressure after either application or cessation of PEEP was reduced (25 and 26%, respectively). These observations suggest that, during CPPB, lung stretch alters neonatal pulmonary vascular tone or, by causing calcium channel-dependent lung volume hysteresis, modulates pulmonary vascular resistance. This interaction exaggerates the effect of airway pressure changes on pulmonary vascular resistance during mechanical ventilation.  相似文献   

13.
Individual effects of hypoxic hypoxia and hypercapnia on the cerebral circulation are well described, but data on their combined effects are conflicting. We measured the effect of hypoxic hypoxia on cerebral blood flow (CBF) and cerebral O2 consumption during normocapnia (arterial PCO2 = 33 +/- 2 Torr) and during hypercapnia (60 +/- 2 Torr) in seven pentobarbital-anesthetized lambs. Analysis of variance showed that neither the magnitude of the hypoxic CBF response nor cerebral O2 consumption was significantly related to the level of arterial PCO2. To determine whether hypoxic cerebral vasodilation during hypercapnia was restricted by reflex sympathetic stimulation we studied an additional six hypercapnic anesthetized lambs before and after bilateral removal of the superior cervical ganglion. Sympathectomy had no effect on base-line CBF during hypercapnia or on the CBF response to hypoxic hypoxia. We conclude that the effects of hypoxic hypoxia on CBF and cerebral O2 consumption are not significantly altered by moderate hypercapnia in the anesthetized lamb. Furthermore, we found no evidence that hypercapnia results in a reflex increase in sympathetic tone that interferes with the ability of cerebral vessels to dilate during hypoxic hypoxia.  相似文献   

14.
J S Makarski 《In vitro》1981,17(5):450-458
The ability of selected vasoactive agents to influence cyclic AMP levels of confluent, early-passaged bovine calf aortic and pulmonary artery endothelial cells was investigated. Among the agents tested, only the catecholamines (isoproterenol, epinephrine, norepinephrine) and prostaglandins (PGE1, PGE2, PGF2 alpha) resulted consistently in increased cyclic AMP production in both cell populations. The degree of cyclic AMP stimulation obtained with other vasoactive compounds (angiotensins I and II, bradykinin, and serotonin) tended to be either very small or difficult to reproduce. Isoproterenol stimulation was blocked completely by propanolol, a beta-blocking agent, but not by phentolamine, and alpha-blocking agent. These results reveal that bovine calf aortic and pulmonary artery endothelial cells are responsive to catecholamines and prostaglandins, and therefore presumably possess both sensitive adenylate cyclases and plasma membrane receptors for these compounds.  相似文献   

15.
Hypercapnia has been shown in animal experiments to induce pulmonary hypertension. This study measured the sensitivity and time course of the human pulmonary vascular response to sustained (4 h) hypercapnia and hypocapnia. Twelve volunteers undertook three protocols: 1) 4-h euoxic (end-tidal Po(2) = 100 Torr) hypercapnia (end-tidal Pco(2) was 10 Torr above normal), followed by 2 h of recovery with euoxic eucapnia; 2) 4-h euoxic hypocapnia (end-tidal Pco(2) was 10 Torr below normal) followed by 2 h of recovery; and 3) 6-h air breathing (control). Pulmonary vascular resistance was assessed at 0.5- to 1-h intervals by using Doppler echocardiography via the maximum tricuspid pressure gradient during systole. Results show progressive changes in pressure gradient over 1-2 h after the onset or offset of the stimuli, and sensitivities of 0.6 to 1 Torr change in pressure gradient per Torr change in end-tidal Pco(2). The human pulmonary circulatory response to changes in Pco(2) has a slower time course and greater sensitivity than is commonly assumed. Vascular tone in the normal pulmonary circulation is substantial.  相似文献   

16.
Chronic obstructive pulmonary diseases, as well as prolonged residence at high altitude, can result in generalized airway hypoxia, eliciting an increase in pulmonary vascular resistance. We hypothesized that a portion of the elevated pulmonary vascular resistance following chronic hypoxia (CH) is due to the development of myogenic tone. Isolated, pressurized small pulmonary arteries from control (barometric pressure congruent with 630 Torr) and CH (4 wk, barometric pressure = 380 Torr) rats were loaded with fura 2-AM and perfused with warm (37 degrees C), aerated (21% O(2)-6% CO(2)-balance N(2)) physiological saline solution. Vascular smooth muscle (VSM) intracellular Ca(2+) concentration ([Ca(2+)](i)) and diameter responses to increasing intraluminal pressure were determined. Diameter and VSM cell [Ca(2+)](i) responses to KCl were also determined. In a separate set of experiments, VSM cell membrane potential responses to increasing luminal pressure were determined in arteries from control and CH rats. VSM cell membrane potential in arteries from CH animals was depolarized relative to control at each pressure step. VSM cells from both groups exhibited a further depolarization in response to step increases in intraluminal pressure. However, arteries from both control and CH rats distended passively to increasing intraluminal pressure, and VSM cell [Ca(2+)](i) was not affected. KCl elicited a dose-dependent vasoconstriction that was nearly identical between control and CH groups. Whereas KCl administration resulted in a dose-dependent increase in VSM cell [Ca(2+)](i) in arteries taken from control animals, this stimulus elicited only a slight increase in VSM cell [Ca(2+)](i) in arteries from CH animals. We conclude that the pulmonary circulation of the rat does not demonstrate pressure-induced vasoconstriction.  相似文献   

17.
Pulmonary veins have been seen primarily as conduit vessels; however, over the past two decades, a large amount of evidence has accumulated to indicate that pulmonary veins can exhibit substantial vasoactivity. In this review, the role of veins in regulation of the pulmonary circulation, particularly during the perinatal period and under certain pathophysiological conditions, is discussed. In the fetus, pulmonary veins contribute a significant fraction to total pulmonary vascular resistance. At birth, the veins as well as the arteries relax in response to endothelium-derived nitric oxide and dilator prostaglandins, thereby assisting in the fall in pulmonary vascular resistance. These effects are oxygen dependent and modulated by cGMP-dependent protein kinase. Under chronic hypoxic conditions, pulmonary veins undergo remodeling and demonstrate substantial constriction and hypertrophy. In a number of species, including the human, pulmonary veins are also the primary sites of action of certain vasoconstrictors such as endothelin and thromboxane. In various pathological conditions, there is an increased synthesis of these vasoactive agents that may lead to pulmonary venous constriction, increased microvascular pressures for fluid filtration, and formation of pulmonary edema. In conclusion, the significant role of veins in regulation of the pulmonary circulation needs to be appreciated to better prevent, diagnose, and treat lung disease.  相似文献   

18.
Bradykinin is an important modulator of endothelial cell function and has also a powerful cardioprotective effect. Here we report that treatment of severely pulmonary hypertensive rats (that recapitulate several of the physiological and pathological characteristics of the human pulmonary vascular disease, including dramatic right ventricular hypertrophy, pericardial effusion and death) with a newly synthesized long-acting bradykinin B2 receptor agonist B9972 caused reduction of the pulmonary artery pressure (PAP=51+/-2.0 versus 68+/-2.8 of untreated animals) and of right ventricular hypertrophy (Rv/Lv+S=0.55+/-0.02 versus 0.73+/-0.03 of untreated rats) and activation of Akt. Long-term stimulation with B9972 in our animal model of SPH resulted in decreased expression of the B2 receptor in lung vasculature. Treatment with B9972 decreased the number of plexiform lesions in the lungs by inducing cell apoptosis in the obliterated vessels and by restoring caveolin-1 expression. B9972 also promoted eNOS activation. In vitro B9972 caused activation of caspase-3 as well as Erk and induction of prostacyclin production in rat pulmonary microvascular EC. Taken together our data suggest that a stable bradykinin B2 agonist B9972 demonstrates the capacity to reduce severe pulmonary hypertension, right ventricular hypertrophy and induce apoptosis of hyperproliferative cells in pre-capillary pulmonary arterioles.  相似文献   

19.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

20.
In six anesthetized and mechanically ventilated adult sheep, the bronchial artery was perfused with blood from an oxygenator-pump circuit. When the lungs were ventilated with 100% O2 and the bronchial O2 tension (PbrO2) was approximately 600 Torr, the mean of the pulmonary vascular resistances (PVR) measured at the beginning (3.32 +/- 0.29 units) and end (3.17 +/- 0.13 units) of the experiment was 3.24 +/- 0.20 units. When the PbrO2 was changed to 58 +/- 1 Torr, the PVR (2.99 +/- 0.14 units) did not change significantly. However, when the lungs were ventilated with air as PbrO2 was decreased to 91 +/- 4, 77 +/- 3, 56 +/- 2, and 42 +/- 1 Torr, the PVR increased to 3.67 +/- 0.18, 4.03 +/- 0.16, 4.79 +/- 0.19, and 4.71 +/- 0.35 units, respectively. However, when the PbrO2 was decreased further to 26 +/- 1 and 13 +/- 1 Torr, the PVR decreased to 3.77 +/- 0.28 and 3.91 +/- 0.30 units, respectively. In contrast, the bronchial vascular resistance decreased monotonically as PbrO2 decreased. The bronchial circulation supplies vasa vasorum to the walls of all but the smallest pulmonary arteries, and it is therefore suggested that the PO2 of the bronchial circulation is responsible for the bimodal response of the pulmonary vasculature, with stimulation of hypoxic pulmonary vasoconstriction at moderate hypoxemia and of hypoxic pulmonary vasodilation at profound hypoxemia. The physiological and pathophysiological significance of the influence of systemic PO2 on pulmonary vascular tone is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号