首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Schäfer  U. Lüttge 《Oecologia》1986,71(1):127-132
Summary Measurements of gas exchange, xylem tension and nocturnal malate synthesis were conducted with well-watered and droughted plants of Kalanchoë uniflora. Corresponding results were obtained with plants grown in 9 h and 12 h photoperiods. In well-watered plants, 50 to 90% of total CO2-uptake occurred during the light period. Nocturnal CO2-uptake and malate synthesis were higher and respiration rate was lower in old leaves (leaf pairs 6 to 10) compared to young leaves (leaf pairs 1 to 5). Within four days of drought distinct physiological changes occurred. Gas exchange during the light period decreased and CO2-uptake during the dark period increased. Nocturnal malate synthesis significantly increased in young leaves.Respiration rate decreased during periods of drought, this decrease being more pronounced in young leaves compared to old leaves. Restriction of gas exchange during the light period resulted in a decrease of transpiration ratio from more than 100 to about 20. The difference between osmotic pressure and xylem tension decreased in young leaves, indicating a reduction in bulk leaf turgor-pressure.We conclude that both the CAM-enhancement in young leaves and the decrease of respiration rate are responsible for the increase of nocturnal CO2-uptake during water stress. During short drought periods, which frequently occur in humid habitats, the observed physiological changes result in a marked reduction of water loss while net CO2-uptake is maintained. This might be relevant for plant growth in the natural habitat.Abbreviations LP light period - DP dark period - CAM crassulacean acid metabolism  相似文献   

2.
The water fluxes and the CO2 exchange of three leaf succulents, Othonna opima, Cotyledon orbiculata and Senecio medley-woodii, with different leaf anatomy, growth form and CO2 fixation pathways (C3, CAM) were monitored with a gas exchange cuvette which was combined with a potometric system to quantify water uptake. Measurements, which are primarily valid for plants with a sufficient water supply, were made during 6 to 10 consecutive days under constant experimental conditions. Water uptake for 24 h exceeded water loss by transpiration only for a S, medley-woodii plant with 10 expanding but only 7 mature leaves. In this case the gained water evidently is put into leaf expansion. All other plants showed balanced transpiration and water uptake rates. O. opima and C. orbiculata have a similar life form, similar water storage volumes and the same natural habitat but their diurnal water uptake patterns differ significantly. In the C3 plant O. opima water uptake increased when the transpiration increased or transpiration rates were higher than uptake rates and vice versa. On the contrary the CAM plant C. orbiculata transpired during the dark period at constant or decreasing rates but showed steadily increasing uptake rates. Senecio medley-woodii- and C. orbiculata are CAM plants with similar diurnal water uptake patterns with its maximum in uptake during or towards the end of the CO2 dark fixation period. Water uptake of C. orbiculata was at its minimum at the end of the light period despite transpiration being maximal. The results were discussed considering the different CO2 fixation pathways. In the investigated CAM succulents, C. orbiculata and S. medley-woodii, the CAM influenced water uptake throughout the whole day and not only during the CO2 dark fixation period.  相似文献   

3.
B. R. Ruess  B. M. Eller 《Planta》1985,166(1):57-66
The combination of a chamber for CO2 gas exchange with a potometric measuring arrangement allowed concomitant investigations into CO2 gas exchange, transpiration and water uptake by the roots of whole plants of Senecio medley-woodii, a species which exhibits Crassulacean acid metabolism. The water-uptake rate showed the same daily pattern as malate concentration and osmotic potential. The accumulation of organic acids resulting from nocturnal CO2 fixation enhanced the water-uptake rate from dusk to dawn. During the day the water-uptake rates decreased with decreasing organic-acid concentration. With gradually increasing water stress, CO2 dark fixation of S. medley-woodii was increased as long as water could be taken up by the roots. It was also shown that a reestablished water supply after drought caused a similar increase which in both cases ameliorated the water uptake in order to conserve a positive water balance for as long as possible. This water-uptake pattern shows that Crassulacean acid metabolism is not only a water-saving adaptation but also enhances water uptake and is directly correlated with the amelioration of the plant water status.Abbreviation CAM Crassulacean acid metabolism  相似文献   

4.
Summary Evidence for the operation of CAM in the deciduous climber, Cissus trifoliata L., was obtained in field and laboratory studies. Under natural conditions, diurnal oscillations of titratable acidity and colorimetric measurements of night CO2 fixation, determined for a period of two and a half years, suggested that acid accumulation was related to plant water status, assessed through the daily courses of stomatal resistance and xylem water potential during dry and rainy seasons. These findings were confirmed by gas exchange studies under controlled conditions which showed that the plant fixed all its CO2 during the day when it was well irrigated; as water stress increased, dark CO2 uptake gradually replaced fixation during the day until the plant only performed dark fixation. In severe water stress, even the rate of the latter process decreased until leaves fell.Abbreviations CAM Crassulacean acid metabolism - FW leaf fresh weight - SWC relative soil water content - PAR photosynthetically active radiation - TR total radiation; r, leaf diffusive resistance - WSD water saturation deficit (leaf-air vapour concentration difference) - RWC relative water content of leaves  相似文献   

5.
The responses of CO2 exchange and overnight malate accumulation of leaf and stem succulent CAM-plants to water stress and the particular climatic conditions of fog and föhn in the southern Namib desert have been investigated. In most of the investigated CAM plants a long term water stress gradually attenuated any uptake of external CO2 and led to CO2 release throughout day and night. No CAM-idling was observed. Rainfall or irrigation immediately restored daytime CO2 uptake while the recovery of the nocturnal CO2 uptake was delayed. Dawn peak of photosynthesis was only found in well watered plants but was markedly reduced by the short term water stress of a föhn-storm. Morning fog with its higher diffuse light intensity compared with clear days increased photosynthetic CO2 uptake considerably. Even in well watered plants nocturnal CO2 uptake and malate accumulation were strongly affected by föhn indicating that the water vapour pressure deficit during the night determines the degree of acidification.  相似文献   

6.
CAM requires a substantial investment of resources into storage carbohydrates to account for nocturnal CO2 uptake, thereby restricting carbohydrate partitioning to other metabolic activities, including dark respiration, growth and acclimation to abiotic stress. Flexible modulation of carbon flow to the different competing sinks under changing environmental conditions is considered a key determinant for the growth, productivity and ecological success of the CAM pathway. The aim of the present study was to examine how shifts in carbohydrate partitioning could assure maintenance of photosynthetic integrity and a positive carbon balance under conditions of increasing water deprivation in CAM species. Measurements of gas exchange, leaf water relations, malate, starch and soluble sugar (glucose, fructose and sucrose) contents were made in leaves of the CAM bromeliad Aechmea ‘Maya’ over a 6‐month period of drought and subsequently over a 2‐month period of recovery from drought. Results indicated that short‐term influences of water stress were minimized by elevating the level of respiratory recycling, and carbohydrate pools were maintained at the expense of export for growth while providing a comparable nocturnal carbon gain to that in well‐watered control plants. Longer term drought resulted in a disproportionate depletion of key carbohydrate reserves. Sucrose, which was of minor importance for providing substrate for the dark reactions under well‐watered conditions, became the major source of carbohydrate for nocturnal carboxylation as drought progressed. Flexibility in terms of the major carbohydrate source used to sustain dark CO2 uptake is therefore considered a crucial factor in meeting the carbon and energy demands under limiting environmental conditions. Recovery from CAM‐idling was found to be dependent on the restoration of the starch pool, which was used predominantly for provision of substrate for nocturnal carboxylation, while net carbon export was limited. The conservation of starch for the nocturnal reactions might be adaptive with regard to responding efficiently to a return of water stress.  相似文献   

7.
J. A. C. Smith  U. Lüttge 《Planta》1985,163(2):272-282
A study was made of the day-night changes under controlled environmental conditions in the bulk-leaf water relations of Kalanchoë daigremontiana, a plant showing Crassulacean acid metabolism. In addition to nocturnal stomatal opening and net CO2 uptake, the leaves of well-watered plants showed high rates of gas exchange during the whole of the second part of the light period. Measurements with the pressure chamber showed that xylem tension increased during the night and then decreased towards a minimum at about midday; a significant increase in xylem tension was also seen in the late afternoon. Cell-sap osmotic pressure paralleled leaf malate content and was maximum at dawn and minimum at dusk. The relationship between these two variables indicated that the nocturnally synthesized malate was apparently behaving as an ideal osmoticum. To estimate bulk-leaf turgor pressure, values for water potential were derived by correcting the pressurechamber readings for the osmotic pressure of the xylem sap. This itself was found to depend on the malate content of the leaves. Bulk-leaf turgor pressure changed rhythmically during the day-night cycle; turgor was low during the late afternoon and for most of the night, but increased quickly to a maximum of 0.20 MPa around midday. In water-stressed plants, where net CO2 uptake was restricted to the dark period, there was also an increase in bulk-leaf turgor pressure at the start of the light period, but of reduced magnitude. Such changes in turgor pressure are likely to be of considerable ecological importance for the water economy of crassulacean-acid-metabolism plants growing in their natural habitats.Abbreviation and symbols CAM Crassulacean acid metabolism - P turgor pressure - osmotic pressure - water potential Dedicated to Professor Dr. H. Ziegler on the occasion of his 60th birthday  相似文献   

8.
The responses of CO2 exchange and overnight malate accumulation of leaf and stem succulent CAM-plants to water stress and the particular climatic conditiens of fog and föhn in the southern Namib desert have been investigated. In most of the investigated CAM plants a long term water stress gradually attenuated any uptake of external CO2 and led to CO2 release throughout day and night. No CAM-idling was observed. Rainfall or irrigation immediately restored daytime CO2 uptake while the recovery of the noctural CO2 uptake was delayed. Dawn peak of photosynthesis was only found in well watered plants but was markedly reduced by the short term water stress of a föhn-storm. Morning fog with its higher diffuse light intensity compared with clear days increased photosynthetic CO2 uptake considerably. Even in well watered plants noctural CO2 uptake and malate accumulation were strongly affected by föhn indicating that the water vapour pressure deficit during the night determines the degree of acidification.  相似文献   

9.
Drought responses of diurnal gas exchange, malic acid accumulation and water status were examined in Delosperma tradescantioides , a succulent that grows in drought-prone microenvironments in summer rainfall and all-year rainfall regions of southern Africa. When well-watered, this species exhibited Crassulacean acid metabolism (CAM)-cycling, but its carbon fixation pattern changed during the development of drought, shifting to either low-level CAM or to CAM-idling. The rate and pattern of this change depended on environmental conditions, duration of water stress and leaf age. At the onset of drought, diurnal malate fluctuation increased, but was strongly depressed (by ca 70%) as drought continued, and when leaf water content and water potential were low (ca 35 and 50% of the initial levels, respectively). When rewatered, rates of growth and photosynthesis, gas exchange and water status recovered fully to pre-stressed values within two days. Whole-shoot carbon uptake rates suggested that leaf growth had continued unabated during a short-term (≅ one week) drought. This emphasises that CAM-idling allows the maintenance of active metabolism with negligible gas exchange when soil water is limiting. It is possible that old or senescent leaves may provide water for the expansion of developing leaves during initial periods of drought. Regardless of the water regime and environmental conditions, leaf nocturnal malate accumulation and water content were positively correlated and increased with leaf age. Thus the gradual loss of water from older mature leaves may induce CAM-idling, which reduces water loss. An important ecological consequence of this combination of CAM modes is the potential to switch rapidly between fast growth via C3 gas exchanges when well-watered to water-conserving CAM-idling during drought.  相似文献   

10.
Creach E 《Plant physiology》1979,64(3):435-438
The enhanced dark CO2 uptake after a preillumination period under varying O2 concentrations has been measured with maize, a C4 plant. For comparison the same study has been conducted with tomato, a C3 plant. Increasing the O2 concentration during preillumination inhibits by 70% the subsequent dark CO2 uptake in tomato but stimulates 2-fold this CO2 uptake in maize. The O2 enhancement of CO2 uptake in maize is due to the enhancement of malate and aspartate synthesis. The percentages of radioactivity incorporated in the C-4 of malate and aspartate vary from 74 to 87% when O2 concentration during preillumination is increased from 0 to 100%.  相似文献   

11.
Drought responses of diurnal gas exchange, malic acid accumulation and water status were examined in Delosperma tradescantioides , a succulent that grows in drought-prone microenvironments in summer rainfall and all-year rainfall regions of southern Africa. When well-watered, this species exhibited Crassulacean acid metabolism (CAM)-cycling, but its carbon fixation pattern changed during the development of drought, shifting to either low-level CAM or to CAM-idling. The rate and pattern of this change depended on environmental conditions, duration of water stress and leaf age. At the onset of drought, diurnal malate fluctuation increased, but was strongly depressed (by ca 70%) as drought continued, and when leaf water content and water potential were low (ca 35 and 50% of the initial levels, respectively). When rewatered, rates of growth and photosynthesis, gas exchange and water status recovered fully to pre-stressed values within two days. Whole-shoot carbon uptake rates suggested that leaf growth had continued unabated during a short-term (∼ one week) drought. This emphasises that CAM-idling allows the maintenance of active metabolism with negligible gas exchange when soil water is limiting. It is possible that old or senescent leaves may provide water for the expansion of developing leaves during initial periods of drought. Regardless of the water regime and environmental conditions, leaf nocturnal malate accumulation and water content were positively correlated and increased with leaf age. Thus the gradual loss of water from older mature leaves may induce CAM-idling, which reduces water loss. An important ecological consequence of this combination of CAM modes is the potential to switch rapidly between fast growth via C3 gas exchanges when well-watered to water-conserving CAM-idling during drought.  相似文献   

12.
Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO2 fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Jülich pressure probe where a small oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO2 fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants.  相似文献   

13.
Abstract The paper reports the results of the comprehensive study of crassulacean acid metabolism in two epiphytic tropical ferns, Drymoglossum piloselloides and Pyrrosia longifolia. The plants were investigated under different light, temperature and water status. It was found that both species are obligate CAM plants. The diurnal acidity rhythm is due to the fluctuation in malic acid concentration, which accounts for the change in titratable acidity. Besides malic acid, shikimate and oxalate are found to be present, but not contributing to the CAM acid rhythm. The diurnal rhythm of malic acid content results in a corresponding rhythm in leaf water relations. Both ΦΦ and Φtotal, were lowest at the end of the night, i.e. when the level of malic acid was highest. The effects of temperature on CO2 exchange were inverse to those observed in other CAM plants. In both ferns studied, dark CO2 fixation increased when the night temperature was increased. Increase in day temperature reduced CO2 uptake during phase IV and during the following night. The observed responses of the ferns to temperature changes suggest that the in situ environmental conditions are optimal for their CAM performance. In weak light, the plants showed net CO2 output during the midday deacidification period. Increases in light intensity reduced such CO2 output. Under drought conditions, the CO2 exchange in the ferns was reduced to zero within 5–6 d, indicating that the ferns studied are more susceptible to water deficiency than other CAM plants. This could be due to a higher cuticular conductance for water. The results are discussed, in particular, in relation to CAM performance of epiphytes growing in the wet tropics.  相似文献   

14.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

15.
To investigate the possible induction of Crassulacean acid metabolism (CAM) by drought in Talinum paniculatum ([Jacq.] Gaertn.), a deciduous herb with succulent leaves and lignified stems, nocturnal acid accumulation and CO2-exchange were studied in watered and droughted greenhouse-grown plants. Watered plants had a typical C3 pattern of CO2-exchange. When plants were subjected to drought, nocturnal acid accumulation increased significantly from 0.9 to 13.4 μmol H+ cm?2 after 21 days. Water deficit provoked a rapid reduction of daytime CO2 assimilation of as much as 92% and a slower increase in night-time fixation. A maximum of 24% of the diel carbon gain was contributed by dark fixation in droughted plants. After 34 days of drought, only CO2 compensation and a small accumulation of acid (idling) was detected during the night. Relative recycling of respiratory CO2 was approximately 100% for most of the water deficit treatment, the amount of CO2 recycled showing a high positive correlation with nocturnal acid accumulation. A low rate of nocturnal loss of CO2 in watered plants did not explain the amount recycled nightly in droughted plants, implying that respiration increased with drought. Leaf lamina area was reduced by 49% during drought due to rolling. Leaf biomass remained unchanged during the water-deficit treatment. Neither apparent quantum yield nor light-saturated photosynthetic rate differed significantly between control and 14-day water-stressed plants rewatered for 20 h. Chlorophyll content did not change with drought. These results confirm that CAM is induced by drought in T. paniculatum; the carbon acquired through this pathway only contributes to maintain, but not to increase, leaf biomass; also, CAM is responsible for a high recycling of respiratory CO2 during the night. Recycling through CAM, plus the reduction of exposed leaf area during drought, may help explain the maintenance of chlorophyll, quantum yield and saturated photosynthetic rates in water-stressed plants of T. paniculatum.  相似文献   

16.
Zusammenfassung Nach einer Dunkelperiode von 40 min und 40 sec wurden die CO2-Aufnahme und die 14C-markierten Produkte während der Photosynthese-Induktion bei Chlorella vulgaris (211-11f) bestimmt. Die mit Preßluft (0,03 Vol.-% CO2) begasten Algen sind bei +27°C kultiviert und bei +10° oder +25°C gemessen worden. Ein Induktionseffekt der photosynthetischen CO2-Aufnahme konnte nur nach einer längeren Dunkelperiode (>3 min) beobachtet werden. Unter diesen Bedingungen wurde 14CO2 am Anfang der Belichtung in Malat, Aspartat und 3-Phosphoglycerat eingebaut. Nach einer kurzen Dunkelperiode (40 sec) waren zu Beginn der Belichtung vor allem die Produkte des Calvin-Cyclus markiert. Die Wirkung von Intermediaten auf die Ausbildung der Induktionseffekte wird diskutiert.
Effect of short dark periods on CO2 uptake and carboxylation of phosphoenolpyruvate during the photosynthetic induction period in Chlorella vulgaris
Summary CO2 exchange, 14CO2 fixation and 14C labelled products of Chlorella vulgaris (strain 211-11f) were studied during the photosynthetic induction period at +10° and +25°C after a dark period of 40 min and 40 sec. The algae were grown under normal aerated conditions (0.03 vol.-% CO2) at +27°C. Transient changes in CO2 uptake, measured with an infrared gas analyzer, could be observed only after a dark period of >3 min; no such changes occurred after a dark period of 40 sec. The autoradiographic studies of the kinetics of the appearance of labelled products at +10° and +25°C showed that after a long dark period (40 min) at the beginning of illumination 14CO2 was incorporated into malate, aspartate and 3-phosphoglycerate. Under these conditions, the intermediates of the Calvin cycle were labelled after 30 sec (+25°C) or 2 min (+10°C) of photosynthesis. After a dark period of 40 sec (at +10° and +25°C), however, 14C incorporation into malate and aspartate was rather low at the beginning of illumination; moreover, the intermediates of the Calvin cycle appeared earlier and were more strongly labelled after this short dark period. The results are discussed with reference to the influence of intermediates on the formation of the transient changes of CO2 uptake in Chlorella.
  相似文献   

17.
To assess the variability of net photosynthetic CO2 exchange per unit leaf area and to construct budgets for stands of field-grown tobacco (Nicotiana tabacum, Connecticut Broadleaf), a number of short-time measurements were made on all available leaf positions on two varieties using a hand-held transparent chamber for conducting gas exchange measurements on leaves. Measurements of net CO2 exchange were carried out on 18 separate days during a 35-day period, beginning 22 days after the seedlings were transplanted to the field. Gas exchange assays on leaves were conducted under ambient conditions of temperature and light intensity at all times of day. Solar radiation was monitored throughout the period, and losses of respiratory CO2 from stems, roots, and leaves (in the dark) were estimated. A simple model was proposed to relate daily total CO2 input to irradiance and total leaf area. The total leaf area was assumed to be a function of day number. Dark respiratory losses accounted for 41% to 47% of total CO2 assimilation. Analysis of variance indicated that the two varieties were not significantly different in whole plant rate of CO2 fixation per unit of leaf area. CO2 input was closely associated with leaf area within each variety. Throughout the experiment, the difference between the two varieties in total leaf area per plant was the largest single factor in determining net CO2 inputs. The cumulative dry weight increase for each variety was similar to the prediction of net dry matter input obtained by gas exchange measurements, thus confirming the close relationship between total plant net CO2 assimilation and dry weight yield.  相似文献   

18.
Manfred Kluge 《Planta》1971,98(1):20-30
Summary The distribution of radioactivity between the products of 14CO2 light fixation in phyllodia of Bryophyllum tubiflorum could be influenced experimentally by manipulating the malic acid content of the cells. Accelerating the deacidification of the tissue during the light period by application of higher light intensities accelerated the increase of malate labelling and the decrease of the sucrose labelling after 14CO2 light fixation under our standard conditions (10 min preillumination, 15 min 14CO2 light fixation, 8000 lux).In other experiments different malate contents of the tissues were induced by treating the phyllodia with different temperatures during the night period. In the morning, phyllodia with low malate content transferred most of the label into malate, and phyllodia with high malate content incorporated most of the 14C radioactivity into sugars. However, this was true only after preillumination of 1 hour. When the phyllodia fixed 14CO2 without preillumination, no differences in the labelling patterns between acidified and non-acidified phyllodia could be observed.In experiments using leaf tissue slices of Bryophyllum daigremontianum we could again observe that malate was labelled more heavily in the deacidified tissue than in the acidified controls, with less radioactivity being transferred into phosphate esters and sugars. The rates of 14CO2 light fixation were identical in tissue slices with high and low malate content. However, the rates of CO2 dark fixation in the acidified samples were clearly lower than those in the deacidified ones. The low rate of CO2 dark fixation in acidified samples could not be inhibited by an inhibitor of PEP-carboxylase as the high CO2 dark fixation rate of the deacidified tissue could be inhibited.The results are discussed in relation to the feed back inhibition of PEP-carboxylase in vivo by malate. Compartmentation also seemed to be involved in controlling the flow of carbon during CO2 light fixation in succulent tissue.  相似文献   

19.
The metabolism of [13C]malate was studied in the Crassulacean plant Kalanchoë tubiflora following exposure to 13CO2 for 2 hour intervals during a 16 hour dark cycle. Nuclear magnetic resonance spectroscopy of [13C]malate extracted from labeled tissue revealed that the transient flux of malate to the mitochondria, estimated by the randomization of [4-13C]malate to [1- 13C]malate by fumarase, varied substantially during the dark period. At both 15 and 25°C, the extent of malate label randomization in the mitochondria was greatest during the early and late parts of the dark period and was least during the middle of the night, when the rate of 13CO2 uptake was highest. Randomization of labeled malate continued for many hours after malate synthesis had initially occurred. Internally respired 12CO2 also served as a source of carbon for malate formation. At 15°C, 15% of the total malate was formed from respired 12CO2, while at 25°C, 49% of the accumulated malate was derived from respired 12CO2. Some of the malate synthesized from external 13CO2 was also respired during the night. The proportion of the total [13C]malate respired during the dark period was similar at 15 and 25°C, and respiration of newly formed [13C]malate increased as the night period progressed. These data are discussed with regard to the relative fluxes of malate to the mitochondria and the vacuole during dark CO2 fixation.  相似文献   

20.
This study was conducted to determine the response in leaf growth and gas exchange of soybean (Glycine max Merr.) to the combined effects of water deficits and carbon dioxide (CO2) enrichment. Plants grown in pots were allowed to develop initially in a glasshouse under ambient CO2 and well-watered conditions. Four-week old plants were transferred into two different glasshouses with either ambient (360 μmol mol-1) or elevated (700 μmol mol-1) CO2. Following a 2-day acclimation period, the soil of the drought-stressed pots was allowed to dry slowly over a 2-week period. The stressed pots were watered daily so that the soil dried at an equivalent rate under the two CO2 levels. Elevated [CO2] decreased water loss rate and increased leaf area development and photosynthetic rate under both well-watered and drought-stressed conditions. There was, however, no significant effect of [CO2] in the response relative to soil water content of normalized leaf gas exchange and leaf area. The drought response based on soil water content for transpiration, leaf area, and photosynthesis provide an effective method for describing the responses of soybean physiological processes to the available soil water, independent of [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号