首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
In nature, prey and predator species are embedded in complex networks of ecological interactions. As a consequence, organism level reactions such as predator-induced prey defenses will not only influence the dynamics of both the prey exhibiting the response and its inducer predator, but also that of a wider set of populations that interact directly or indirectly with them.In this work our aim is to determine the consequences of community-level side effects, defense specificity, and timing of inducible defenses for the stability of model ecological communities. We shall consider small webs of two and three trophic levels, containing one to three species per level. The model food webs include well-known community motifs that will be studied by means of qualitative analyses of the community matrix. Our results show that side effects that suppress non-focal interactions were able to decrease community stability, particularly when defensive responses were delayed. Conversely, side effects that increase the strength of non-focal interactions stabilized communities. This work also shows that as the defensive response became more specific, it is more likely to obtain a stable community. In general terms, our results revealed that delayed responses decrease the likelihood of system stability. Our results highlight the importance of the underlying biology of species interactions for the definition of the proper topology, and consequently dynamics, of complex ecological networks.  相似文献   

2.
Müllerian mimicry, where groups of chemically defended species display a common warning color pattern and thereby share the cost of educating predators, is one of the most striking examples of ecological adaptation. Classic models of Müllerian mimicry predict that all unpalatable species of a similar size and form within a community should converge on a single mimetic pattern, but instead communities of unpalatable species often display a remarkable diversity of mimetic patterns (e.g. neotropical ithomiine butterflies). It has been suggested that this apparent paradox may be explained if different suites of predators and species belonging to different mimicry groups utilize different micro-habitats within the community. We developed a stochastic individual-based model for a community of unpalatable mimetic prey species and their predators to evaluate this hypothesis and to examine the effect of predator heterogeneity on prey micro-habitat use. We found that community-level mimetic diversity was higher in simulations with heterogeneous predator micro-habitat use than in simulations with homogeneous predator micro-habitat use. Regardless of the form of predation, mimicry pattern-based assortative mating caused community-level mimetic diversity to persist. Heterogeneity in predator micro-habitat use led to an increased association between mimicry pattern and prey micro-habitat use relative to homogeneous predator micro-habitat use. This increased association was driven, at least in part, by evolutionary convergence of prey micro-habitat use when predators displayed heterogeneous micro-habitat use. These findings provide a theoretical explanation for an important question in evolutionary biology: how is community-level Müllerian mimetic diversity maintained in the face of selection against rare phenotypes?  相似文献   

3.
Andrew Wilby  Kate H. Orwin 《Oecologia》2013,172(4):1167-1177
Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.  相似文献   

4.
《Ecological Complexity》2008,5(2):99-105
Recent analyses of climate data indicate that the intensity and frequency of different weather extremes have increased. Such increased environmental variability may lead to increased species extinction rates and hence have important consequences for the long-term persistence of ecological communities. Here we use model communities in order to investigate the relationship between species richness and community persistence in a fluctuating environment. We model two scenarios: (1) correlated species responses to environmental fluctuations and (2) uncorrelated (independent) species responses. We quantify the risk and extent of species extinctions using the so-called community viability analysis. It is shown that species-rich communities are more sensitive to environmental stochasticity than species-poor communities. Specifically, per species risk of extinction is higher in species-rich communities than in species-poor ones. Moreover, for a given species richness, communities with uncorrelated species responses to environmental variation run a considerable higher risk of losing a fixed proportion of species compared with communities with correlated species responses. We discuss the compatibility of these results with the ecological insurance hypothesis.  相似文献   

5.
The number of species that live in a habitat typically declines as that habitat becomes more isolated. However, the influence of habitat isolation on patterns of food web structure, in particular the ratio of predator to prey species richness, is less well understood. We placed aquatic mesocosms at varying distances from ponds that acted as sources of potential colonists; then we examined how isolation affected the ratio of predator:prey species richness in the communities that assembled. In the final sampling, a total of 21 species (12 prey and 9 predators) of insects, crustaceans, and amphibians had colonized the mesocosms. We found that total species richness, as well as the richness of predators and prey, declined with increasing isolation. However, predator richness declined more rapidly than prey richness with increasing isolation, which lead to decreasing predator:prey ratios. This result conflicts with prior demonstrations of invariant predator:prey ratios in freshwater communities.  相似文献   

6.
J. Bastow Wilson 《Oecologia》1996,106(2):272-276
Apparent constancy in the ratio of predator species to prey species has been offered as evidence that ecological communities are structured by interspecific interactions. If significantly different from random expectation, this effect would be one of the few sound pieces of evidence for community structure. The evidence was re-evaluated by using the data from previous studies to form species pools, and forming simulated communities by drawing species at random from these pools (with replacement). Using a correlation coefficient (number of predator species versus number of prey species), and also the statistic used by the original workers (where different), the observed predator:prey correlation was compared to that for the random communities. In five studies, the observed predator:prey ratio was not significantly different from random expectation. In the only two studies where there was significant departure from the null model, it was with more variation in the ratio than expected on a random basis. It is concluded that there is as yet no evidence for near-constant predator:prey ratios.  相似文献   

7.
Economics and ecology both present us with a key challenge: scaling up from individual behaviour to community-level effects. As a result, biologists have frequently utilized theories and frameworks from economics in their attempt to better understand animal behaviour. In the study of predator–prey interactions, we face a particularly difficult task—understanding how predator choices and strategies will impact the ecology and evolution not just of individual prey species, but whole communities. However, a similar challenge has been encountered, and largely solved, in Marketing, which has created frameworks that successfully predict human consumer behaviour at the community level. We argue that by applying these frameworks to non-human consumers, we can leverage this predictive power to understand the behaviour of these key ecological actors in shaping the communities they act upon. We here use predator–prey interactions, as a case study, to demonstrate and discuss the potential of marketing and human-consumer theory in helping us bridge the gap from laboratory experiments to complex community dynamics.  相似文献   

8.
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density‐dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities.  相似文献   

9.
We consider a simple predator-prey model of coevolution. By allowing coevolution both within and between trophic levels the model breaks the traditional dichotomy between coevolution among competitors and coevolution between a prey and its predator. By allowing the diversity of prey and predator species to emerge as a property of the evolutionarily stable strategies (ESS), the model breaks another constraint of most approaches to coevolution that consider as fixed the number of coevolving species. The number of species comprising the ESS is influenced by a parameter that determines the predator's niche breadth. Depending upon the parameter's value the ESS may contain: 1) one prey and one predator species, 2) two prey and one predator, 3) two prey and two predators, 4) three prey and two predators, 5) three prey and three predators, etc. Evolutionarily, these different ESSs all emerge from the same model. Ecologically, however, these ESSs result in very different patterns of community organization. In some communities the predator species are ecologically keystone in that their removal results in extinctions among the prey species. In others, the removal of a predator species has no significant impact on the prey community. These varied ecological roles for the predator species contrasts sharply with the essential evolutionary role of the predators in promoting prey species diversity. The ghost of predation past in which a predator's insignificant ecological role obscures its essential evolutionary role may be a frequent property of communities of predator and prey.  相似文献   

10.
Limberger R  Wickham SA 《PloS one》2011,6(12):e29071
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation.  相似文献   

11.
1. Much work on ecological consequences of community assembly history has focused on the formation of history-induced alternative stable equilibria. We hypothesize that assembly history may affect not only community composition but also population dynamics, with assembled communities differing in species composition potentially residing in different dynamical states. 2. We provided an empirical test of the aforementioned hypothesis using a laboratory microcosm experiment that manipulated both the colonization order of three bacterivorous protist species in the presence of a protist predator and environmental productivity. 3. Both priority effects and random divergence emerged, resulting in two different community compositional states: one characterized by the dominance of one prey species and the other by the extinction of the same prey. While communities in the former state exhibited noncyclic dynamics, the majority of communities in the latter state exhibited cyclic dynamics driven by the interaction between another prey and the predator. 4. Temporal variability of total prey community biovolume consequently differed among communities with different histories. 5. Changing productivity altered priority effects on the structure and dynamics of communities experiencing only certain histories. 6. Our results support the dual (compositional and dynamical) consequences of assembly history and emphasize the importance of incorporating the dynamical view into the field of community assembly.  相似文献   

12.
Top predator losses affect a wide array of ecological processes, and there is growing evidence that top predators are disproportionately vulnerable to environmental changes. Despite increasing recognition of the fundamental role that top predators play in structuring communities and ecosystems, it remains challenging to predict the consequences of predator extinctions in highly variable environments. Both biotic and abiotic drivers determine community structure, and manipulative experiments are necessary to disentangle the effects of predator loss from other co‐occurring environmental changes. To explore the consistency of top predator effects in ecological communities that experience high local environmental variability, we experimentally removed top predators from arid‐land stream pool mesocosms in southeastern Arizona, USA, and measured natural background environmental conditions. We inoculated mesocosms with aquatic invertebrates from local streams, removed the top predator Abedus herberti (Hemiptera: Belostomatidae) from half of the mesocosms as a treatment, and measured community divergence at the end of the summer dry season. We repeated the experiment in two consecutive years, which represented two very different biotic and abiotic environments. We found that some of the effects of top predator removal were consistent despite significant differences in environmental conditions, community composition, and colonist sources between years. As in other studies, top predator removal did not affect overall species richness or abundance in either year, and we observed inconsistent effects on community and trophic structure. However, top predator removal consistently affected large‐bodied species (those in the top 1% of the community body size distribution) in both years, increasing the abundance of mesopredators and decreasing the abundance of detritivores, even though the identity of these species varied between years. Our findings highlight the vulnerability of large taxa to top predator extirpations and suggest that the consistency of observed ecological patterns may be as important as their magnitude.  相似文献   

13.
Investigating the effect of biodiversity on the stability of ecological communities is complicated by the numerous ways in which models of community interactions can be formulated. This has led to differences in conclusions and interpretations of how the number of species in a community affects its stability. Here, we derive a simple, general relationship between the coefficient of variation (CV) of combined species densities and the environmentally driven variability in species' per capita population growth rates. For a given level of environmentally driven variability in per capita population growth rates, increasing the number of species in a community decreases the CV of combined species densities, provided that species do not respond to environmental fluctuations in a perfectly correlated way. Thus, a community with more species of competitors will be more stable (have lower CV in combined species densities for a given level of environmental variability) than a species-poor community, provided that the species in both communities show equal variability in per capita population growth rates and provided that species within each community do not show strongly correlated responses to environmental fluctuations. This conclusion also applies to "noninteractive" models in which there is no competition between species.  相似文献   

14.
In the last years, a remarkable theoretical effort has been made in order to understand the relation between stability and complexity in ecological communities. Yet, what maintains species diversity in real ecological communities is still an open question. The non‐random structures of ecological interaction networks have been recognized as one key ingredient impacting the maximum number of coexisting species within the ecological community. However most of the earlier theoretical studies have considered communities with only one interaction type (either antagonistic, competitive or mutualistic). Recently, it has been proposed that multiple interaction types might stabilize ecosystems and that, in this hybrid case, increasing complexity increases stability. Here we show that these results depend on ad hoc hypothesis that the authors used in their model and we highlight the need to disentangle the role of multiple interaction types and constant interaction effort allocation on community stability. Indeed, we find that mixing of mutualistic and predator–prey interaction types does not stabilize the community dynamics and we demonstrate that a positive correlation between complexity and stability is observed only if a constant effort allocation is imposed in the ecological interactions. Synthesis In recent years a sparkling research has been devoted to the search of new theoretical mechanisms to explain way ecosystems may persist despite their complexity. Here we show that, contrary to what recently suggested (Mougi et al. 2012), the mismatch between theoretical results and empirical evidences on the stability of ecological community is still there also for communities with both mutualistic and antagonistic interactions, and the ‘complexity‐stability’ paradox is still alive. Indeed, we demonstrate that their results arise as an artifact of the peculiar rescaling of the interaction strengths they imposed. Our study suggests that further theoretical studies and experimental evidences are still needed to better understand the role of interaction strengths in real ecological communities.  相似文献   

15.
Population and community variability in randomly fluctuating environments   总被引:2,自引:0,他引:2  
The prediction that environmental fluctuations may destabilise populations and yet stabilise aggregate community properties has remained largely untested. We examined population and community stability under constant and fluctuating temperatures in simple planktonic assemblages of differing algal richness. Temperature dependent resource competition produced a highly asymmetric community structure where algal community biomass was dominated by one species. For a given level of species richness, temperature fluctuations induced lower community covariance and thus stabilised community biomass. However, increasing algal species richness increased the variability of population abundance and growth rates, as well as population and community variability. Consumer dynamics were directly destabilised by environmental fluctuations. These results confirm recent theoretical studies suggesting a stabilising effect of environmental fluctuations at the community level. However, they also support the theoretical prediction that increasing species richness may be of limited value for community stability, most especially in asymmetric communities, when competition directly affects population variability.  相似文献   

16.
Metacommunity theory is a convenient framework in which to investigate how local communities linked by dispersal influence patterns of species distribution and abundance across large spatial scales. For organisms with complex life cycles, such as mosquitoes, different pressures are expected to act on communities due to behavioral and ecological partitioning of life stages. Adult females select habitats for oviposition, and resulting offspring are confined to that habitat until reaching adult stages capable of flight; outside‐container effects (OCE) (i.e., spatial factors) are thus expected to act more strongly on species distributions as a function of adult dispersal capability, which should be limited by geographic distances between sites. However, larval community dynamics within a habitat are influenced by inside‐container effects (ICE), mainly interactions with conspecifics and heterospecifics (e.g., through effects of competition and predation). We used a field experiment in a mainland‐island scenario to assess whether environmental, spatial, and temporal factors influence mosquito prey and predator distributions and abundances across spatial scales: within‐site, between‐site, and mainland‐island. We also evaluated whether predator abundances inside containers play a stronger role in shaping mosquito prey community structure than do OCE (e.g., spatial and environmental factors). Temporal influence was more important for predators than for prey mosquito community structure, and the changes in prey mosquito species composition over time appear to be driven by changes in predator abundances. There was a negligible effect of spatial and environmental factors on mosquito community structure, and temporal effects on mosquito abundances and distributions appear to be driven by changes in abundance of the dominant predator, perhaps because ICE are stronger than OCE due to larval habitat restriction, or because adult dispersal is not limited at the chosen spatial scales.  相似文献   

17.
Ecologists have long debated whether predators primarily disrupt one another’s prey capture through interspecific interference, or instead complement one another by occupying different feeding niches. Resolution of this debate has been difficult because different experimental designs are typically used to study interference versus complementarity. We adopted a somewhat atypical approach, surveying communities of predatory insects on 73 free-growing Brassica oleracea plants, and then re-constructing each community in field cages to measure its impact on aphid prey. The predator communities naturally varied in species composition, richness, and relative abundance; in our experiment we kept total predator density constant to avoid confounding effects of differing overall abundance. The predator communities’ impacts on aphids differed by >10-fold. Using a generalized linear model, we found that pairings of several predators in the community improved aphid suppression while no pairings disrupted it. Indeed, accounting for the presence of the beneficial pairings provided more power than species richness to explain predators’ impacts on aphids. Altogether, our results suggest generally complementary or neutral, rather than disruptive, multi-predator effects in this community. Our approach may be useful for determining the frequency of complementary species-pairings in many other systems.  相似文献   

18.
Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator–prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary ‘details’ that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species.  相似文献   

19.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

20.
Ecological communities consist of generalists who interact with proportionally many species, and specialists who interact with proportionally few. The strength of these interactions also varies, with communities typically exhibiting a few strong links embedded within many weak links. Historically, it has been argued that generalists should interact more weakly with their partners than specialists and, since weak interactions are thought to increase community stability, that this pattern increases the stability of diverse communities. Here, we studied model-generated predator-prey communities to explicitly investigate the validity of this argument. In feasible communities—those which were both locally stable and all species had positive biomass—we indeed found that species with many predators or prey are affected by them more weakly than species with few. This relationship, however, is only part of the story. While species with many predators (or prey) tend to be only weakly affected by each of them, these many weak interactions are balanced by a few strong interactions with prey (or predators). These few strong interactions are large enough that, when the effect of predator and prey interactions are combined, it seems that species with many interactions actually interact more strongly than species with few interactions. Though past research has tended to focus on either the arrangement of species interactions or the strength of those interactions, we show here that the two are in fact inextricably linked. This observation has implications for both the realistic design of theoretical models, and the conservation of ecological communities, especially those in which the strength and arrangement of species’ interactions are impacted by biodiversity-loss disturbances such as habitat alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号