首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human tissue kallikreins: physiologic roles and applications in cancer   总被引:12,自引:0,他引:12  
Tissue kallikreins are members of the S1 family (clan SA) of trypsin-like serine proteases and are present in at least six mammalian orders. In humans, tissue kallikreins (hK) are encoded by 15 structurally similar, steroid hormone-regulated genes (KLK) that colocalize to chromosome 19q13.4, representing the largest cluster of contiguous protease genes in the entire genome. hKs are widely expressed in diverse tissues and implicated in a range of normal physiologic functions from the regulation of blood pressure and electrolyte balance to tissue remodeling, prohormone processing, neural plasticity, and skin desquamation. Several lines of evidence suggest that hKs may be involved in cascade reactions and that cross-talk may exist with proteases of other catalytic classes. The proteolytic activity of hKs is regulated in several ways including zymogen activation, endogenous inhibitors, such as serpins, and via internal (auto)cleavage leading to inactivation. Dysregulated hK expression is associated with multiple diseases, primarily cancer. As a consequence, many kallikreins, in addition to hK3/PSA, have been identified as promising diagnostic and/or prognostic biomarkers for several cancer types, including ovarian, breast, and prostate. Recent data also suggest that hKs may be causally involved in carcinogenesis, particularly in tumor metastasis and invasion, and, thus, may represent attractive drug targets to consider for therapeutic intervention.  相似文献   

2.
Human tissue kallikreins (hKs) are a family of fifteen serine proteases. Several lines of evidence suggest that hKs participate in proteolytic cascade pathways. Human kallikrein 5 (hK5) has trypsin-like activity, is able to self-activate, and is co-expressed in various tissues with other hKs. In this study, we examined the ability of hK5 to activate other hKs. By using synthetic heptapeptides that encompass the activation site of each kallikrein and recombinant pro-hKs, we demonstrated that hK5 is able to activate pro-hK2 and pro-hK3. We then showed that, following their activation, hK5 can internally cleave and deactivate hK2 and hK3. Given the predominant expression of hK2 and hK3 in the prostate, we examined the pathophysiological role of hK5 in this tissue. We studied the regulation of hK5 activity by cations (Zn2+, Ca2+, Mg2+, Na2+, and K+) and citrate and showed that Zn can efficiently inhibit hK5 activity at levels well below its normal concentration in the prostate. We also show that hK5 can degrade semenogelins I and II, the major components of the seminal clot. Semenogelins can reverse the inhibition of hK5 by Zn2+, providing a novel regulatory mechanism of its serine protease activity. hK5 is also able to internally cleave insulin-like growth factor-binding proteins 1, 2, 3, 4, and 5, but not 6, suggesting that it might be involved in prostate cancer progression through growth factor regulation. Our results uncover a kallikrein proteolytic cascade pathway in the prostate that participates in seminal clot liquefaction and probably in prostate cancer progression.  相似文献   

3.
Human tissue kallikreins (hKs) form a family of 15 closely related (chymo)trypsin-like serine proteinases. These tissue kallikreins are expressed in a wide range of tissues including the central nervous system, the salivary gland, and endocrine-regulated tissues, such as prostate, breast, or testis, and may have diverse physiological functions. For several tissue kallikreins, a clear correlation has been established between expression and different types of cancer. For example, the prostate-specific antigen (PSA or hK3) serves as tumor marker and is used to monitor therapy response. Using a novel strategy, we have cloned, expressed in Escherichia coli or in insect cells, refolded, activated, and purified the seven human tissue kallikreins hK3/PSA, hK4, hK5, hK6, hK7, hK10, and hK11. Moreover, we have determined their extended substrate specificity for the nonprime side using a positional scanning combinatorial library of tetrapeptide substrates. hK3/PSA and hK7 exhibited a chymotrypsin-like specificity preferring large hydrophobic or polar residues at the P1 position. In contrast, hK4, hK5, and less stringent hK6 displayed a trypsin-like specificity with strong preference for P1-Arg, whereas hK10 and hK11 showed an ambivalent specificity, accepting both basic and large aliphatic P1 residues. The extended substrate specificity profiles are in good agreement with known substrate cleavage sites but also in accord with experimentally solved (hK4, hK6, and hK7) or modeled structures. The specificity profiles may lead to a better understanding of human tissue kallikrein functions and assist in identifying their physiological protein substrates as well as in designing more selective inhibitors.  相似文献   

4.
We have studied the immunohistochemical expression (IE) of eight non-tissue-specific human kallikreins (hKs) (hK5, 6, 7, 10, 11, 12, 13, and 14) in different normal tissues. The IE was always cytoplasmic, showing a characteristic pattern in some tissues. Comparison of the IE of all hKs studied in the different tissues revealed no major differences, suggesting that they share a common mode of regulation. Furthermore, hKs were immunohistochemically revealed in a variety of tissues, indicating that no protein is tissue-specific (except for hK2 and hK3, which have tissue-restricted expression). In general, our results correspond well with data from RT-PCR and ELISA assays. Glandular epithelia constitute the main kallikrein IE sites, and the staining in their secretions confirms that these proteases are secreted. A variety of other tissues express the proteins as well. We have also immunohistochemically evaluated all the above hKs in several malignant tissues. Tumors arising from tissues expressing kallikreins tested positive. Corresponding to the IE in normal glandular tissues, most hKs were expressed in adenocarcinomas. The prognostic value of several hKs was studied in series of prostate, renal cell, colon and urothelial carcinomas.  相似文献   

5.
The regulation of tissue kallikrein activity by plasma serine proteinase inhibitors (serpins) was investigated by measuring the association rate constants of six tissue-kallikrein family members isolated from the rat submandibular gland, with rat kallikrein-binding protein (rKBP) and alpha 1-proteinase inhibitor (alpha 1-PI). Both these serpins inhibited kallikreins rK2, rK7, rK8, rK9 and rK10 with association rate constants in the 10(3)-10(4) M-1.s-1 range, whereas only 'true' tissue kallikrein rK1 was not susceptible to alpha 1-PI. This results in slow inhibition of rK1 by plasma serpins, which could explain why this kallikrein is the only member of the gene family identified so far that induces a transient decrease in blood pressure when injected in minute amounts into the circulation.  相似文献   

6.
Human tissue kallikreins (genes, KLKs; proteins, hKs) are a subgroup of hormonally regulated serine proteases. Two tissue kallikreins, namely hK2 and hK3 (prostate-specific antigen, PSA), are currently used as serological biomarkers of prostate cancer. Human tissue kallikrein 9 (KLK9) is a newly identified member of the tissue kallikrein gene family. Recent reports have indicated that KLK9 mRNA is differentially expressed in ovarian and breast cancer and has prognostic value. Here, we report the production of recombinant hK9 (classic form) using prokaryotic and mammalian cells and the generation of polyclonal antibodies. Total testis tissue mRNA was reverse-transcribed to cDNA, amplified, cloned into a pET/200 TOPO plasmid vector, and transformed into E. coli cells. hK9 was purified and used as an immunogen to generate polyclonal antibodies. Full-length KLK9 cDNA was also cloned in the vector pcDNA3.1 and was expressed in CHO cells. The identity of hK9 was confirmed by mass spectrometry. hK9 rabbit antiserum displayed no cross-reactivity with other tissue kallikreins and could specifically recognize E. coli- and CHO-derived hK9 on Western blots. hK9 was mainly detected in testis and seminal vesicles by Western blotting. The reagents generated here will help to define the physiological role of this tissue kallikrein and its involvement in human disease.  相似文献   

7.
We tested the hypothesis that human tissue kallikreins (hKs) may regulate signal transduction by cleaving and activating proteinase-activated receptors (PARs). We found that hK5, 6 and 14 cleaved PAR N-terminal peptide sequences representing the cleavage/activation motifs of human PAR1 and PAR2 to yield receptor-activating peptides. hK5, 6 and 14 activated calcium signalling in rat PAR2-expressing (but not background) KNRK cells. Calcium signalling in HEK cells co-expressing human PAR1 and PAR2 was also triggered by hK14 (via PAR1 and PAR2) and hK6 (via PAR2). In isolated rat platelets that do not express PAR1, but signal via PAR4, hK14 also activated PAR-dependent calcium signalling responses and triggered aggregation. The aggregation response elicited by hK14 was in contrast to the lack of aggregation triggered by hK5 and 6. hK14 also caused vasorelaxation in a phenylephrine-preconstricted rat aorta ring assay and triggered oedema in an in vivo model of murine paw inflammation. We propose that, like thrombin and trypsin, the kallikreins must now be considered as important 'hormonal' regulators of tissue function, very likely acting in part via PARs.  相似文献   

8.
The human tissue kallikrein family of serine proteases (hK1-hK15 encoded by the genes KLK1-KLK15) is involved in several cancer-related processes. Accumulating evidence suggests that certain tissue kallikreins are part of an enzymatic cascade pathway that is activated in ovarian cancer and other malignant diseases. In the present study, OV-MZ-6 ovarian cancer cells were stably co-transfected with plasmids expressing hK4, hK5, hK6, and hK7. These cells displayed similar proliferative capacity as the vector-transfected control cells (which do not express any of the four tissue kallikreins), but showed significantly increased invasive behavior in an in vitro Matrigel invasion assay (p<0.01; Mann-Whitney U-test). For in vivo analysis, the cancer cells were inoculated into the peritoneum of nude mice. Simultaneous expression of hK4, hK5, hK6, and hK7 resulted in a remarkable 92% mean increase in tumor burden compared to the vector-control cell line. Five out of 14 mice in the 'tissue kallikrein overexpressing' group displayed a tumor/situs ratio greater than 0.198, while this weight limit was not exceeded at all in the vector control group consisting of 13 mice (p=0.017; chi2 test). Our results strongly support the view that tumor-associated overexpression of tissue kallikreins contributes to ovarian cancer progression.  相似文献   

9.
A major characteristic of prostate cancer is the elevation of serum levels of prostate-specific antigen (hK3) and hK2, which are tumor markers that correlate with advancing stages of disease. Including hK4, these three kallikrein serine proteases are almost exclusively produced by the prostate. Prostate cancer cells have been recently shown to overexpress protease-activated receptors (PAR), which can be potentially activated by kallikreins and can regulate tumor growth. Here, we show that recombinant hK2 and hK4 activate ERK1/2 signaling of DU-145, PC-3, and LNCaP prostate cancer cells, which express both PAR1 and PAR2. These kallikreins also stimulate the proliferation of DU-145 cells. Pretreatment of hK2 and hK4 with the serine protease inhibitor, aprotinin, blocks the responses in DU-145 cells, and small interfering RNA against PAR1 and PAR2 also inhibits ERK1/2 signaling. To determine which PAR is activated by hK2 and hK4, a cell line that expresses a single PAR, a PAR1 knockout mouse lung fibroblast cell line transfected with PAR1 (KOLF-PAR1) or PAR2 (KOLF-PAR2) was used. hK4 activates both PAR1 and PAR2, whereas hK2 activates PAR2. hK4 generates more phosphorylated ERK1/2 than hK2. These data indicate that prostatic kallikreins (hK2 and hK4) directly stimulate prostate cancer cell proliferation through PAR1 and/or PAR2 and may be potentially important targets for future drug therapy for prostate cancer.  相似文献   

10.
Human kallikrein 5 (KLK5) is a member of the human kallikrein gene family of serine proteases. Preliminary results indicate that the protein, hK5, may be a potential serological marker for breast and ovarian cancer. Other studies implicate hK5 with skin desquamation and skin diseases. To gain further insights on hK5 physiological functions, we studied its substrate specificity, the regulation of its activity by various inhibitors, and identified candidate physiological substrates. After producing and purifying recombinant hK5 in yeast, we determined the k(cat)/K(m) ratio of the fluorogenic substrates Gly-Pro-Arg-AMC and Gly-Pro-Lys-AMC, and showed that it has trypsin-like activity with strong preference for Arg over Lys in the P1 position. The serpins alpha(2)-antiplasmin and antithrombin were able to inhibit hK5 with an inhibition constant (k(+2)/K(i)) of 1.0 x 10(-) (2)and 4.2 x 10(-4) m(-1) min(-1), respectively. No inhibition was observed with the serpins alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, although alpha(2)-macroglobulin partially inhibited hK5 at high concentrations. We also demonstrated that hK5 can efficiently digest the extracellular matrix components, collagens type I, II, III, and IV, fibronectin, and laminin. Furthermore, our results suggest that hK5 can potentially release (a) angiostatin 4.5 from plasminogen, (b) "cystatin-like domain 3" from low molecular weight kininogen, and (c) fibrinopeptide B and peptide beta15-42 from the Bbeta chain of fibrinogen. hK5 could also play a role in the regulation of the binding of plasminogen activator inhibitor 1 to vitronectin. Our findings suggest that hK5 may be implicated in tumor progression, particularly in invasion and angiogenesis, and may represent a novel therapeutic target.  相似文献   

11.
The reactive center loop (RCL) of serpins plays an essential role in the inhibition mechanism acting as a substrate for their target proteases. Changes within the RCL sequence modulate the specificity and reactivity of the serpin molecule. Recently, we reported the construction of alpha1-antichymotrypsin (ACT) variants with high specificity towards human kallikrein 2 (hK2) [Cloutier SM, Kündig C, Felber LM, Fattah OM, Chagas JR, Gygi CM, Jichlinski P, Leisinger HJ & Deperthes D (2004) Eur J Biochem271, 607-613] by changing amino acids surrounding the scissile bond of the RCL and obtained specific inhibitors towards hK2. Based on this approach, we developed highly specific recombinant inhibitors of human kallikrein 14 (hK14), a protease correlated with increased aggressiveness of prostate and breast cancers. In addition to the RCL permutation with hK14 phage display-selected substrates E8 (LQRAI) and G9 (TVDYA) [Felber LM, Borgo?o CA, Cloutier SM, Kündig C, Kishi T, Chagas JR, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP & Deperthes D (2005) Biol Chem386, 291-298], we studied the importance of the scaffold, serpins alpha1-antitrypsin (AAT) or ACT, to confer inhibitory specificity. All four resulting serpin variants ACT(E8), ACT(G9), AAT(E8) and AAT(G9) showed hK14 inhibitory activity and were able to form covalent complex with hK14. ACT inhibitors formed more stable complexes with hK14 than AAT variants. Whereas E8-based inhibitors demonstrated a rather relaxed specificity reacting with various proteases with trypsin-like activity including several human kallikreins, the two serpins variants containing the G9 sequence showed a very high selectivity for hK14. Such specific inhibitors might prove useful to elucidate the biological role of hK14 and/or its implication in cancer.  相似文献   

12.
In epithelial ovarian cancer, the high mortality rate is usually ascribed to late diagnosis, since these tumors commonly lack early-warning symptoms, but tumor-associated biomarkers useful for prognosis or therapy response prediction are in short supply. However, members of the tissue kallikrein serine protease family, the serine protease uPA and its inhibitor PAI-1, are associated with tumor progression of ovarian cancer. Therefore, we used ELISA to determine uPA, PAI-1, and tissue kallikreins hK5-8, 10, 11, and 13 in extracts of 142 primary tumor tissue specimens from ovarian cancer patients and studied the strength of association between protein expression levels of these tumor tissue-associated factors. uPA, PAI-1, hk5, and hk8 were related to FIGO stage; hK5 expression was higher in FIGO III/IV than in FIGO I/II patient tissues. PAI-1 and hk5 differed significantly according to nuclear grading; expression of hK5 was higher in G3 than in G1/2 tumors. Associations between uPA, PAI-1, and the tissue kallikreins were weak. There were strong pairwise correlations within the cluster of tissue kallikreins hK5, 6, 7, 8, 10, and 11, but their bivariate distributions depended on nuclear grading. These results support the notion that several tissue kallikreins are co-expressed in ovarian cancer patients, substantiating the existence of a steroid hormone-driven tissue kallikrein cascade in this disease.  相似文献   

13.
The kallikrein family is a group of 15 serine protease genes clustered on chromosome 19q13.4. Binding of kallikreins to protease inhibitors is an important mechanism for regulating their enzymatic activity and may have potential clinical applications. Human kallikrein gene 5 (KLK5) is a member of this family and encodes for a secreted serine protease (hK5). This kallikrein was shown to be differentially expressed at the mRNA and protein levels in diverse malignancies. Our objective was to study the enzymatic activity and the interaction of recombinant hK5 protein with protease inhibitors. Recombinant hK5 protein was produced in yeast and mammalian expression systems and purified by chromatography. HPLC fractionation, followed by ELISA-type assays, immunoblotting and radiolabeling experiments were performed to detect the possible interactions between hK5 and proteinase inhibitors in serum. Enzymatic deglycosylation was performed to examine the glycosylation pattern of the protein. The enzymatic activity of hK5 was tested using trypsin and chymotrypsin-specific synthetic fluorogenic substrates. In serum and ascites fluid, in addition to the free ( approximately 40 kDa) form, hK5 forms complexes with alpha(1)-antitrypsin and alpha(2)-macroglobulin. These complexes were detected by hybrid ELISA-type assays using hK5-specific coating antibodies and inhibitor detection antibodies. The ability of hK5 to bind to these inhibitors was further verified in vitro. Spiking of serum samples with 125I-labeled hK5 results in the distribution of the protein in two higher molecular mass (bound) forms, in addition to the unbound form. The hK5 mature enzyme is active and shows trypsin, but not chymotrypsin-like, activity. The pro-form of hK5 is not active. Recombinant hK5 shows a higher than predicted molecular mass due to glycosylation. hK5 is partially complexed with alpha(1)-antitrypsin and alpha(2)-macroglobulin in serum and ascites fluid of ovarian cancer patients. The recombinant protein is glycosylated and its mature form shows trypsin-like activity.  相似文献   

14.
Malignant mesothelioma is an aggressive cancer of the pleura that is causally related to exposure to asbestos fibres. The kallikrein serine proteases [tissue (hK1) and plasma (hKB1) kallikreins, and kallikrein-related peptidases (KRP/hK2-15)] and the mitogenic kinin peptides may have a role in tumourigenesis. However, it is not known whether hK1, hKB1, KRP/hK proteins or kinin receptors are expressed in pleural mesotheliomas. The expression of hK1, hKB1, KRP/hK2, 5, 6, 7, 8 and 9, and kinin B(1) and B(2) receptors was assessed in archived selected normal tissue and mesothelioma tumour sections by immunoperoxidase and immunofluorescence labelling. hK1, hKB1 and kinin B(1) and B(2) receptors were expressed in malignant cells of the epithelioid and sarcomatoid components of biphasic mesothelioma tumour cells. The percentage of cells with cytoplasmic and nuclear labelling and the intensity of labelling were similar for hK1, hKB1 and the kinin receptors. KRP/hK2, 6, 8 and 9 were also expressed in the cytoplasm and nuclei of mesothelioma cells, whereas KRP/hK5 and hK7 showed predominantly cytoplasmic localisation. This is a first report, but further studies are required to determine whether these proteins have a functional role in the pathogenesis of mesothelioma and/or may be potential biomarkers for pleural mesothelioma.  相似文献   

15.
The reactive site loop of serpins undoubtedly defines in part their ability to inhibit a particular enzyme. Exchanges in the reactive loop of serpins might reassign the targets and modify the serpin-protease interaction kinetics. Based on this concept, we have developed a procedure to change the specificity of known serpins. First, reactive loops are very good substrates for the target enzymes. Therefore, we have used the phage-display technology to select from a pentapeptide phage library the best substrates for the human prostate kallikrein hK2 [Cloutier, S.M., Chagas, J.R., Mach, J.P., Gygi, C.M., Leisinger, H.J. & Deperthes, D. (2002) Eur. J. Biochem. 269, 2747-2754]. Selected substrates were then transplanted into the reactive site loop of alpha1-antichymotrypsin to generate new variants of this serpin, able to inhibit the serine protease. Thus, we have developed some highly specific alpha1-antichymotrypsin variants toward human kallikrein 2 which also show high reactivity. These inhibitors might be useful to help elucidate the importance of hK2 in prostate cancer progression.  相似文献   

16.
Human kallikrein 4 (hK4) is a member of the expanded family of human kallikreins, a group of 15 secreted proteases. While this protein has been associated with ovarian and prostate cancer prognosis, only limited functional information exists. Therefore, we have undertaken an investigation of its enzymatic properties regarding substrate preference, degradation of extracellular matrix proteins, and its inhibition by various inhibitors. We successfully expressed and purified active recombinant hK4 from supernatants of the Pichia pastoris expression system. This enzyme seems to cleave more efficiently after Arg compared to Lys at the P1 position and exhibits modest specificity for amino acids at positions P2 and P3. hK4 forms complexes with alpha1-antitrypsin, alpha2-antiplasmin and alpha2-macroglobulin. The protease mediates limited degradation of extracellular matrix proteins such as collagen I and IV, and more efficient degradation of the alpha-chain of fibrinogen. The cleavage of extracellular matrix proteins by hK4 suggests that this enzyme may play a role in tissue remodeling and cancer metastasis.  相似文献   

17.
Interaction of subtilisins with serpins.   总被引:1,自引:0,他引:1       下载免费PDF全文
Serpins are well-characterized inhibitors of the chymotrypsin family serine proteinases. We have investigated the interaction of two serpins with members of the subtilisin family, proteinases that possess a similar catalytic mechanism to the chymotrypsins, but a totally different scaffold. We demonstrate that alpha 1 proteinase inhibitor inhibits subtilisin Carlsberg and proteinase K, and alpha 1 antichymotrypsin inhibits proteinase K, but not subtilisin Carlsberg. When inhibition occurs, the rate of formation and stability of the complexes are similar to those formed between serpins and chymotrypsin family members. However, inhibition of subtilisins is characterized by large partition ratios where more than four molecules of each serpin are required to inhibit one subtilisin molecule. The partition ratio is caused by the serpins acting as substrates or inhibitors. The ratio decreases as temperature is elevated in the range 0-45 degrees C, indicating that the serpins are more efficient inhibitors at high temperature. These aspects of the subtilisin interaction are all observed during inhibition of chymotrypsin family members by serpins, indicating that serpins accomplish inhibition of these two distinct proteinase families by the same mechanism.  相似文献   

18.
Insulin-like growth factors (IGFs) are important growth regulators of both normal and malignant prostate cells. Their action is regulated by six insulin-like growth factor binding proteins (IGFBPs). The proteolytic cleavage of IGFBPs by various proteases decreases dramatically their affinity for their ligands and therefore enhances the bioavailability of IGFs. To elucidate the putative biological role of prostatic kallikreins hK2 and hK3 (prostate-specific antigen) in tumour progression, we analyzed the degradation of IGFBP-2, -3, -4 and -5 by these two tissue kallikreins. We found that hK3, already characterized as an IGFBP-3 degrading protease, cleaved IGFBP-4 but not IGFBP-2 and -5, whereas hK2 cleaved all of the IGFBPs much more effectively, and at concentrations far lower than those reported for other IGFBP-degrading proteases. The proteolytic patterns after cleavage of IGFBPs by hK2 and hK3 were similar and were not modified in the presence of IGF-I. Heparin, but not other glycosaminoglycans, enhanced dramatically the ability of hK3 but not hK2 to degrade IGFBP-3 and IGFBP-4. More importantly, the IGFBP fragments generated by hK2 and hK3 had no IGF-binding capacity, as assessed by Western ligand blotting. Our results suggest that the prostatic kallikreins hK2 and hK3 may influence specifically the tumoral growth of prostate cells through the degradation of IGFBPs, to increase IGF bioavailability.  相似文献   

19.
Prostate-specific antigen (PSA), produced by prostate cells, provides an excellent serum marker for prostate cancer. It belongs to the human kallikrein family of enzymes, a second prostate-derived member of which is human glandular kallikrein-1 (hK2). Active PSA and hK2 are both 237-residue kallikrein-like proteases, based on sequence homology. An hK2 model structure based on the serine protease fold is presented and compared to PSA and six other serine proteases in order to analyze in depth the role of the surface-accessible loops surrounding the active site. The results show that PSA and hK2 share extensive structural similarity and that most amino acid replacements are centered on the loops surrounding the active site. Furthermore, the electrostatic potential surfaces are very similar for PSA and hK2. PSA interacts with at least two serine protease inhibitors (serpins): alpha-1-antichymotrypsin (ACT) and protein C inhibitor (PCI). Three-dimensional model structures of the uncleaved ACT molecule were developed based upon the recent X-ray structure of uncleaved antithrombin. The serpin was docked both to PSA and hK2. Amino acid replacements and electrostatic complementarities indicate that the overall orientation of the proteins in these complexes is reasonable. In order to investigate PSA's heparin interaction sites, electrostatic computations were carried out on PSA, hK2, protein C, ACT, and PCI. Two heparin binding sites are suggested on the PSA surface and could explain the enhanced complex formation between PSA and PCI, while inhibiting the formation of the ACT-PSA complex, PSA, hK2, and their preliminary complexes with ACT should facilitate the understanding and prediction of structural and functional properties for these important proteins also with respect to prostate diseases.  相似文献   

20.
Hook VY  Hwang SR 《Biological chemistry》2002,383(7-8):1067-1074
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号