首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3 (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency of the SEC3 variants correlated with enhanced binding without any optimum in the binding range covered by native TCR ligands. Comparable studies using anti-TCR antibodies of known affinity confirmed these observations. By comparing the biological potency of the two sets of ligands, we found a significant correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength.  相似文献   

2.
T cell receptor engagement promotes proliferation, differentiation, survival, or death of T lymphocytes. The affinity/avidity of the TCR ligand and the maturational stage of the T cell are thought to be principal determinants of the outcome of TCR engagement. We demonstrate in this study that the same mouse TCR preferentially uses distinct residues of homologous peptides presented by the MHC molecules to promote specific cellular responses. The preference for distinct TCR contacts depends on neither the affinity/avidity of TCR engagement (except in the most extreme ranges), nor the maturity of engaged T cells. Thus, different portions of the TCR ligand appear capable of biasing T cells toward specific biological responses. These findings explain differences in functional versatility of TCR ligands, as well as anomalies in the relationship between affinity/avidity of the TCR for the peptide/MHC and cellular responses of T cells.  相似文献   

3.
T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.  相似文献   

4.
Differing conditions of antigen priming varying either the concentration or affinity of T cell receptor (TCR) ligands greatly alter T cell responses. Here, we demonstrate that antigen-specific CD4(+) nai;ve T cells primed with either altered peptide ligands (APLs) or a minimal concentration of antigen peptide become anergic without observable cell divisions. Transforming growth factor-beta1 (TGF-beta1) expression was induced 24h following in these stimulation conditions producing anergic cells. Productively stimulated nai;ve T cells expressed IL-2 to differentiate into T helper 1 (Th1) cells, secreting interferon-gamma (IFN-gamma) upon secondary antigen stimulation; T cells primed with an APL did not secrete either interleukin-4 (IL-4) or IFN-gamma, but expressed TGF-beta1 and Tob, a member of the anti-proliferative gene family. Therefore, T cell responses are regulated by TCR signaling depending on the extent of TCR engagement. These results suggest that partial antigen stimulation in the periphery can induce nai;ve CD4(+)T cell unresponsiveness.  相似文献   

5.
To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affinity determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated the importance of receptor cross-linking density in determining TCR signaling. Moreover, it was found that the functional two-dimensional affinity of TCR ligands was affected by the chemical composition of the ligand-presenting surface. This makes it possible that cell-bound TCR ligands, despite their low affinity in solution, are of optimal two-dimensional affinity thereby allowing effective TCR binding under physiological conditions, i.e. at low ligand densities in cellular interfaces.  相似文献   

6.
Although the functions and antigen recognition requirements of alphabeta T cells are well characterised, the antigens recognised by gammadelta T cells and the consequences of this recognition are unclear. gammadelta T cells are enriched within epithelia, where they eradicate transformed epithelial cells and regulate inflammation. To understand how this occurs, we need to understand the cellular ligands recognised by the gammadelta cell through the gammadelta T-cell receptor (TCR). We have therefore generated a soluble TCR (sTCR) to identify ligands for the murine gammadelta intestinal intraepithelial lymphocyte (IEL) population. sTCR was produced in the baculovirus expression system and purified by affinity chromatography on an anti-TCRdelta affinity column. sTCR was recognised by a panel of conformation-specific anti-TCRgammadelta antibodies. We will now use our sTCR to directly test the binding of putative ligands to the TCR using surface plasmon resonance, and to isolate the ligand biochemically.  相似文献   

7.
TCR reactivity is tuned during thymic development. Immature thymocytes respond to low-affinity self-ligands resulting in positive selection. Following differentiation, T cells no longer respond to low-affinity ligands, but respond well to high-affinity (foreign) ligands. We show in this study that this response includes integrin activation, supramolecular activation cluster formation, Ca(2+) flux, and CD69 expression. Because glycosylation patterns are known to change during T cell development, we tested whether alterations in sialylation influence CD8 T cell sensitivity to low affinity TCR ligands. Using neuraminidase treatment or genetic deficiency in the ST3Gal-I sialyltransferase, we show that desialylation of mature CD8 T cells enhances their sensitivity to low-affinity ligands, although these treatments do not completely recapitulate the dynamic range of immature T cells. These studies identify sialylation as one of the factors that regulate CD8 T cell tuning during development.  相似文献   

8.
We have shown previously that T cells activated by optimal TCR and CD28 ligation exhibit marked proliferative heterogeneity, and approximately 40% of these activated cells fail entirely to participate in clonal expansion. To address how prior cell division influences the subsequent function of primary T cells at the single cell level, primary CD4+ T cells were subjected to polyclonal stimulation, sorted based on the number of cell divisions they had undergone, and restimulated by ligation of TCR/CD28. We find that individual CD4+ T cells exhibit distinct secondary response patterns that depend upon their prior division history, such that cells that undergo more rounds of division show incrementally greater IL-2 production and proliferation in response to restimulation. CD4+ T cells that fail to divide after activation exist in a profoundly hyporesponsive state that is refractory to both TCR/CD28-mediated and IL-2R-mediated proliferative signals. We find that this anergic state is associated with defects in both TCR-coupled activation of the p42/44 mitogen-activated protein kinase (extracellular signal-related kinase 1/2) and IL-2-mediated down-regulation of the cell cycle inhibitor p27kip1. However, these defects are selective, as TCR-mediated intracellular calcium flux and IL-2R-coupled STAT5 activation remain intact in these cells. Therefore, the process of cell division or cell cycle progression plays an integral role in anergy avoidance in primary T cells, and may represent a driving force in the formation of the effector/memory T cell pool.  相似文献   

9.
The strength of interactions with APC instructs naive T cells to undergo programmed expansion and differentiation, which is largely determined by the peptide affinity and dose as well as the duration of TCR ligation. Although, most ligands mediating these interactions are terminally sialylated, the impact of the T cell sialylation status on Ag-dependent response remains poorly understood. In this study, by monitoring TCR transgenic CD8+ T cells, OT-I, we show that biochemical desialylation of naive OT-I T cells increases their sensitivity for agonist as well as partial agonist peptides. Desialylation enhances early activation and shortens the duration of TCR stimulation required for proliferation and differentiation, without increasing apoptosis. Moreover, desialylation of naive OT-I T cells augments their response to tumor-presented Ag. These results provide direct evidence for a regulatory role for sialylation in Ag-dependent CD8+ T cell responses and offer a new approach to sensitize or dampen Ag-specific CD8+ T cell responses.  相似文献   

10.
In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4+ antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4+ T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCRβ crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high “avidity” effector and memory T cells in response to pathogen are discussed.  相似文献   

11.
Conventional vaccines afford protection against infectious diseases by expanding existing pathogen-specific peripheral lymphocytes, both CD8 cytotoxic effector (CTL) and CD4 helper T cells. The latter induce B cell maturation and antibody production. As a consequence, lymphocytes within the memory pool are poised to rapidly proliferate at the time of a subsequent infection. The "thymic vaccination" concept offers a novel way to alter the primary T cell repertoire through exposure of thymocytes to altered peptide ligands (APL) with reduced T cell receptor (TCR) affinity relative to cognate antigens recognized by those same TCRs. Thymocyte maturation (i.e. positive selection) is enhanced by low affinity interaction between a TCR and an MHC-bound peptide in the thymus and subsequent emigration of mature cells into the peripheral T lymphocyte pool follows. In principal, such variants of antigens derived from infectious agents could be utilized for peptide-driven maturation of thymocytes bearing pathogen-specific TCRs. To test this idea, APLs of gp33-41, a Db-restricted peptide derived from the lymphocytic choriomeningitis virus (LCMV) glycoprotein, and of VSV8, a Kb-restricted peptide from the vesicular stomatitis virus (VSV) nucleoprotein, have been designed and their influence on thymic maturation of specific TCR-bearing transgenic thymocytes examined in vivo using irradiation chimeras. Injection of APL resulted in positive selection of CD8 T cells expressing the relevant viral specificity and in the export of those virus-specific CTL to lymph nodes without inducing T cell proliferation. Thus, exogenous APL administration offers the potential of expanding repertoires in vivo in a manner useful to the organism. To efficiently peripheralize antigen-specific T cells, concomitant enhancement of mechanisms promoting thymocyte migration appears to be required. This commentary describes the rationale for thymic vaccination and addresses the potential prophylactic and therapeutic applications of this approach for treatment of infectious diseases and cancer. Thymic vaccination-induced peptide-specific T cells might generate effective immune protection against disease-causing agents, including those for which no effective natural protection exists.  相似文献   

12.
A role for TCR affinity in regulating naive T cell homeostasis   总被引:11,自引:0,他引:11  
Homeostatic signals that control the overall size and composition of the naive T cell pool have recently been identified to arise from contact with self-MHC/peptide ligands and a cytokine, IL-7. IL-7 presumably serves as a survival factor to keep a finite number of naive cells alive by preventing the onset of apoptosis, but how TCR signaling from contact with self-MHC/peptide ligands regulates homeostasis is unknown. To address this issue, murine polyclonal and TCR-transgenic CD8+ cells expressing TCR with different affinities for self-MHC/peptide ligands, as depicted by the CD5 expression level, were analyzed for their ability to respond to and compete for homeostatic factors under normal and lymphopenic conditions. The results suggest that the strength of the TCR affinity determines the relative "fitness" of naive T cells to compete for factors that support cell survival and homeostatic proliferation.  相似文献   

13.
IL-2 secretion is pertussis toxin sensitive in a T lymphocyte hybridoma   总被引:1,自引:0,他引:1  
Interaction of specific ligands with TCR initiates a cascade of biochemical events which leads to expression of high affinity IL-2R and subsequent IL-2 secretion. Activation of phospholipase C (PL-C) is considered to be a key event in the initiation of this cascade. However, in addition to this PL-C-dependent pathway, PL-C-independent pathways have been hypothesized. Identification of the steps constituting these PL-C-independent pathways has been difficult because activation of PL-C and the subsequent cascade of events mask the effects of such pathways. Specific inhibitors for PL-C, or mutants defective in, the PL-C pathway would facilitate delineation of alternative activation pathways. We have identified a murine pork insulin/IAd-specific T cell hybridoma, B8P3.11, in which perturbation of the B8P3.11 TCR by either Ag in association with Ia, anti-CD3 antibodies, or a mitogenic lectin does not induce increases in myo-inositol 1,4,5-triphosphate production or cytosolic free calcium, yet it does lead to IL-2 secretion. Treatment of B8P3.11 with pertussis toxin, at concentrations which ADP-ribosylate GTP-binding proteins, inhibits IL-2 secretion. Thus, signal transduction resulting in IL-2 secretion by B8P3.11 likely involves a G protein. In contrast, TCR/ligand interaction activates the PL-C-dependent pathway in LBRM 331A5, a T cell lymphoma. Furthermore, pertussis toxin treatment, which blocks IL-2 secretion by B8P3.11, does not alter IL-2 secretion by LBRM 331A5. However, similar pertussis toxin substrates are present in both cells. Therefore, B8P3.11 T cells should help to elucidate PL-C-independent activation pathways.  相似文献   

14.
The alphabeta T cell receptor (TCR) can be triggered by a class of ligands called superantigens. Enterotoxins secreted by bacteria act as superantigens by simultaneously binding to an MHC class II molecule on an antigen- presenting cell and to a TCR beta-chain, thereby causing activation of the T cell. The cross-reactivity of enterotoxins with different Vbeta regions can lead to stimulation of a large fraction of T cells. To understand the molecular details of TCR-enterotoxin interactions and to generate potential antagonists of these serious hyperimmune reactions, we engineered soluble TCR mutants with improved affinity for staphylococcal enterotoxin C3 (SEC3). A library of randomly mutated, single-chain TCRs (Vbeta-linker-Valpha) were expressed as fusions to the Aga2p protein on the surface of yeast cells. Mutants were selected by flow cytometric cell sorting with a fluorescent-labeled SEC3. Various mutations were identified, primarily in Vbeta residues that are located at the TCR:SEC3 interface. The combined mutations created a remodeled SEC3-binding surface and yielded a Vbeta domain with an affinity that was increased by 1000-fold (K(D)=7 nM). A soluble form of this Vbeta mutant was a potent inhibitor of SEC3-mediated T cell activity, suggesting that these engineered proteins may be useful as antagonists.  相似文献   

15.
Vaccines that incorporate peptide mimics of tumor antigens, or mimotope vaccines, are commonly used in cancer immunotherapy and function by eliciting increased numbers of T cells that cross-react with the native tumor antigen. Unfortunately, they often elicit T cells that do not cross-react with or that have low affinity for the tumor antigen. Using a high affinity tumor-specific T cell clone, we identified a panel of mimotope vaccines for the dominant peptide antigen from a mouse colon tumor that elicits a range of tumor protection following vaccination. The TCR from this high affinity T cell clone was rarely identified in ex vivo evaluation of tumor-specific T cells elicited by mimotope vaccination. Conversely, a low affinity clone found in the tumor and following immunization was frequently identified. Using peptide libraries, we determined if this frequently identified TCR improved the discovery of efficacious mimotopes. We demonstrated that the representative TCR identified more protective mimotopes than the high affinity TCR. These results suggest that targeting a dominant fraction of tumor-specific T cells generates potent immunity and that consideration of the available T cell repertoire is necessary for targeted T cell therapy. These results have important implications when optimizing mimotope vaccines for cancer immunotherapy.  相似文献   

16.
Peptide Ag initiates CD4(+) T cell proliferation, but the subsequent effects of Ag on clonal expansion are not fully known. In this study, murine CD4(+) T cells were labeled with the fluorescent dye CFSE and were stimulated with specific peptide Ag. Activation occurred, as CFSE-associated fluorescence was reduced 2-fold with each cell division. Separation of proliferating cells based upon CFSE fluorescence intensity showed that daughter cells from each cell division proliferate even after removal of Ag. A limited exposure (2 h) to peptide programmed the cells to proliferate independently of Ag. Although not required for cell division, Ag increased the survival of proliferating cells and increased the total number of cell divisions in the expansion process. These results indicate that Ag exposure begins a program of cell division that does not require but is modified by further TCR stimulation.  相似文献   

17.
Antigen recognition by T cells relies on the interaction between T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC). The pMHC-TCR interaction is two-dimensional (2D), in that both the ligand and receptor are membrane-anchored and their movement is limited to 2D diffusion. The 2D nature of the interaction is critical for the ability of pMHC ligands to trigger TCR. The exact properties of the 2D pMHC-TCR interaction that enable TCR triggering, however, are not fully understood. Here, we altered the 2D pMHC-TCR interaction by tethering pMHC ligands to a rigid plastic surface with flexible poly(ethylene glycol) (PEG) polymers of different lengths, thereby gradually increasing the ligands’ range of motion in the third dimension. We found that pMHC ligands tethered by PEG linkers with long contour length were capable of activating T cells. Shorter PEG linkers, however, triggered TCR more efficiently. Molecular dynamics simulation suggested that shorter PEGs exhibit faster TCR binding on-rates and off-rates. Our findings indicate that TCR signaling can be triggered by surface-tethered pMHC ligands within a defined 3D range of motion, and that fast binding rates lead to higher TCR triggering efficiency. These observations are consistent with a model of TCR triggering that incorporates the dynamic interaction between T cell and antigen-presenting cell.  相似文献   

18.
T-cell development and the CD4-CD8 lineage decision   总被引:2,自引:0,他引:2  
Cell-fate decisions are controlled typically by conserved receptors that interact with co-evolved ligands. Therefore, the lineage-specific differentiation of immature CD4+ CD8+ T cells into CD4+ or CD8+ mature T cells is unusual in that it is regulated by clonally expressed, somatically generated T-cell receptors (TCRs) of unpredictable fine specificity. Yet, each mature T cell generally retains expression of the co-receptor molecule (CD4 or CD8) that has an MHC-binding property that matches that of its TCR. Two models were proposed initially to explain this remarkable outcome--'instruction' of lineage choice by initial signalling events or 'selection' after a stochastic fate decision that limits further development to cells with coordinated TCR and co-receptor specificities. Aspects of both models now appear to be correct; mistake-prone instruction of lineage choice precedes a subsequent selection step that filters out most incorrect decisions.  相似文献   

19.
TCR affinity dictates T cell selection in the thymus and also has a high impact on the fate of peripheral T cells. Graft-vs-host disease (GVHD) is a pathological process initiated by activation of donor T cells after adoptive transfer into an allogeneic recipient. How TCR affinity affects the potential of alloreactive T cells to induce GVHD is unclear. Using alloreactive CD4+ and CD8+ TCR transgenic (Tg) T cells, GVHD models are presented that allow for the visualization of how CD8+ alloreactive T cells behave in response to alloantigens with different TCR affinity in the absence or presence of CD4 help. In a nonmyeloablative transplant model where GVHD lethality is due to marrow aplasia, alloreactive CD8+ TCR Tg T cells induced significantly more severe GVHD in the recipients that express an intermediate-affinity alloantigen than in the recipients that express a high-affinity alloantigen. In a myeloablative transplant model where GVHD lethality is due to epithelium injury, CD8+ TCR Tg cells were also more pathogenic in the recipients with an intermediate-affinity alloantigen than in those with a high-affinity alloantigen. The presence of alloreactive CD4+ TCR Tg cells enhanced the potential of CD8+ TCR Tg cells to cause GVHD in recipients with an intermediate-, but not with a high-, affinity alloantigen. These findings underscore that alloantigen affinity and CD4 help control the fate and pathogenicity of alloreactive CD8+ T cells in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号