首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 72 毫秒
1.
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料, 采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明, 104个SSR标记在亲本间具有多态性, 多态率为68.0%; 4个置换系的落粒性与亲本日本晴的落粒性相似, 表现难落粒。3个置换系与亲本93-11的落粒性相似, 表现易落粒; 7个染色体片段置换系在第1和第6染色体上检出7个置换片段, 其长度分别为23.6、16.5、 6.6、 9.9、 10.4、 20.2和7.1 cM; qSH-1-1被定位在第1染色体RM472-RM1387之间, 遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL, 被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL, qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

2.
利用RIL和CSSL群体检测水稻种子休眠性QTL   总被引:23,自引:0,他引:23  
利用由梗稻品种Asominori与籼稻品种IR24的杂交组合衍生的重组自交F10。家系(Recombinant Inbred Lines,RIL)群体及其衍生的染色体片段置换系(Chromosome Segment Substitution Lines,CSSL)群体,进行了种子休眠性QTL的检测和遗传效应分析。其中CSSL群体有2个,即CSSLl(以Asominori为背景,置换片段来自IR24)和CSSL2(以IR24为背景,置换片段来自Asominori)。在RIL群体上共检测到3个种子休眠性QTL,分别位于第3、6和9染色体上;在CSSL1群体中检测到分布在第1、3和7染色体上的3个休眠性QTL;而在CSSl2群体上检测到的3个QTL则分别位于第1、2和7染色体上。同时在两套CSSL群体上,分别检测到位于第1、7染色体上位置相近且效应一致的休眠性QTL,分析表明其所在的Asominori片段含对种子休眠性的增效基因,相应的IB24段含有减效基因。  相似文献   

3.
利用染色体片段置换系定位水稻落粒性主效QTL   总被引:6,自引:3,他引:6  
水稻落粒性是与其生产密切相关的重要性状之一。以7个染色体片段置换系为材料,采用重叠群代换作图法对控制落粒性的2个主效QTL进行定位。结果表明,104个SSR标记在亲本间具有多态性,多态率为68.0%;4个置换系的落粒性与亲本日本晴的落粒性相似,表现难落粒。3个置换系与亲本93-11的落粒性相似,表现易落粒;7个染色体片段置换系在第1和第6染色体上检出7个置换片段,其长度分别为23.6、16.5、6.6、9.9、10.4、20.2和7.1 cM;qSH-1-1被定位在第1染色体RM472-RM1387之间,遗传距离约为6.6 cM。qSH-6-1为新发现的落粒性主效QTL,被定位在第6染色体RM6782-RM3430之间,遗传距离约为4.2 cM。利用染色体片段置换系能准确地定位水稻落粒性QTL,qSH-1-1与qSH-6-1的鉴定和初步定位为其进一步的精细定位、图位克隆及分子标记辅助选择奠定了基础。  相似文献   

4.
基于CSSL的高密度物理图谱定位水稻分蘖角度QTL   总被引:1,自引:0,他引:1  
对以籼稻9311为遗传背景携带粳稻日本晴基因组的染色体片段置换系(CSSL)的遗传图谱进行分子标记加密,构建了含250个多态标记的高密度物理图谱。以119个CSSLs为材料,P≤0.001为阈值,筛选到分蘖角度与受体亲本9311差异极显著的10个系。结合物理图谱和代换作图方法,共鉴定出5个分蘖角度QTL,其中qTA11的加性效应表现为增效作用,来源于9311的等位基因;其余4个QTL的加性效应为减效作用,均来源于日本晴的等位基因。qTA6-1和qTA6-2分别被定位于第6染色体RM253–RM527之间的3.55Mb区段和RM3139–RM494的1.65Mb区间;qTA9被定位于第9染色体RM257–RM189之间的3.40Mb区段;qTA10被定位在第10染色体RM222–S10-1之间的2.10Mb区段;qTA11被定位于第11染色体RM1761–RM4504之间的3.30Mb区间。以上研究结果为水稻分蘖角度QTL的精细定位和株型育种提供了依据。  相似文献   

5.
杨德卫  郑向华  程朝平  叶宁  黄凤凰  叶新福 《遗传》2018,40(12):1101-1111
水稻是世界上最早驯化的重要粮食作物之一。水稻芒可以保护水稻种子不被鸟琢食,是水稻重要的驯化性状之一。芒在野生稻中普遍存在,对野生稻的生存和传播至关重要,然而在驯化和人工选择过程中该性状逐渐被淘汰。定位和克隆水稻长芒相关基因是研究水稻芒驯化遗传机制的基础。本研究以籼稻恢复系东南恢810为受体、漳浦野生稻为供体构建的146个染色体片段置换系(chromosome segment substitution lines, CSSLs)为研究材料,调查了146个CSSLs株系和双亲的芒长,结果表明在4个置换系中检测到1个控制水稻芒长主效基因GAD1-2,位于水稻第8号染色体;利用重叠代换作图法,将GAD1-2定位在Ind8-10和RM4936标记之间,遗传距离约为4.75 Mb。选择分离群体中的显性单株,利用开发的标记,最终将GAD1-2 基因定位在两个 Indel 标记之间,两者间的物理距离约为27 kb,该区域内只有两个候选基因Os08g0485500Os08g0485400。经测序和分析表明,Os08g0485500GAD1-2的候选基因,GAD1-2在保守的ORF区域存在6个碱基缺失,导致丝氨酸和半胱氨酸这两个氨基酸缺失,从而表现长芒的性状;在Os08g0485500基因位点已克隆了1个控制水稻芒长的GAD1基因,推测GAD1-2GAD1为等位基因本研究为进一步理解水稻起源演化和水稻芒长发育基因的遗传机制奠定了基础。  相似文献   

6.
潜育性水稻田广泛分布于中国、斯里兰卡、印度、印度尼西亚、塞拉里昂、利比亚、尼日利亚、哥伦比亚和菲律宾等国,其中我国南方稻区就有近700万公顷低产潜育性水稻田。该类水稻田还原性强,矿质营养失调,尤以Fe^2 过量积累,对水稻生长发育产生不良的逆境胁迫作用。培育抗亚铁毒的水稻品种是简便、经济有效地提高稻谷产量的重要途径之一。该文利用由粳稻品种Asominori与籼稻品种IR24杂交衍生的Asominori染色体片段置换系(Chromosome Segment Substitution Lines,CSSLs)群体为材料,检测与抗亚铁毒胁迫有关性状QTL。共检测到与抗亚铁毒胁迫有关性状QTL14个,各QTL的LOD值为2.72~6.63。其中检测到与抗亚铁毒胁迫直接有关的性状叶片棕色斑点指数QTL3个,分别位于第3、9、11染色体C515~XNpb279、R2638~C1263和G1465~C950之间,对应的贡献率分别为16.45%、11.16%和28.02%;与其他已发表的定位结果比较发现,位于第三染色体C515~XNpb279间控制叶片棕色斑点指数的QTL与水稻功能图谱上控制叶绿素含量的QTL的位置一致;表明在亚铁毒胁迫条件下,水稻在其叶片表面出现棕色斑点,叶片衰老,产生一些叶绿素降解物或衍生物,以提高叶片细胞对亚铁等重金属毒害的耐受力。另外,在第11染色体G1465~C950之间检测到了控制叶片棕色斑点指数、茎干重和根干重QTL1个,为主效QTL。在第6染色体XNpb386~XNpb342之间检测到控制茎干重、株高、根长和根干重QTL1个,是否与水稻抗亚铁毒有关需要进一步研究。本研究旨在通过定位与抗亚铁毒有关的QTL,借助与之紧密连锁的分子标记有效地聚合这些QTL,培育出抗亚铁毒性强的水稻新种质材料。  相似文献   

7.
水稻分蘖角度的QTL定位和主效基因的遗传分析   总被引:11,自引:0,他引:11  
利用水稻籼粳亚种间组合Asominori×IR24重组自交系(RIL)群体71个株系和相应的全基因组染色体片段置换系(Chromosomesegmentsubstitutionline,CSSL)群体65个株系,在2种环境下对分蘖角度性状进行了数量性状基因座(QTL)定位和上位性效应的遗传分析。在两种群体中都出现了分蘖角度的超亲分离。在RIL群体中发现了5个主效QTLs和3对上位性双位点互作标记基因座,控制水稻分蘖角度。其中在第9染色体上位于XNpb108~C506RFLP分子标记区间的qTA-9基因座在2种环境中同时出现,其贡献率平均为28·6%,增加分蘖角度的等位基因来自籼稻品种IR24。利用CSSL群体图示基因型分析,证实在第9染色体上含有RFLP标记C609和C506约15cM的染色体区段,存在增加分蘖角度的基因,来源于染色体片段供体亲本IR24,在Asominori的遗传背景中能增加分蘖角度约15°,该基因的位置与RIL群体在第9染色体上定位的QTL相同,证实了qTA-9的存在。F1表型测定及F2代遗传分析表明,来自IR24的等位基因是一个不完全显性基因。除一对上位性位点存在显著的环境互作效应外,未发现其他位点存在与环境的互作效应。不同基因的加性效应和双位点的上位性效应的共同作用可能是造成水稻分蘖角度超亲分离的主要原因。  相似文献   

8.
抽穗期是水稻(Oryza sativa)品种的重要农艺性状之一,适宜的抽穗期是获得理想产量的前提。鉴定和定位水稻抽穗期基因/QTL,分析其遗传效应对改良水稻抽穗期至关重要。以籼稻品种9311(Oryzasativa ssp.indica‘Yangdao 6’)为受体,粳稻品种日本晴(Oryza sativa ssp.japonica‘Nipponbare’)为供体构建的94个染色体片段置换系群体为材料,以P≤0.01为阈值,对置换片段上的抽穗期QTL进行了鉴定。采用代换作图法共定位了4个控制水稻抽穗期的QTL,分别位于第3、第4、第5和第8染色体;QTL的加性效应值变化范围为–6.4––2.7,加性效应百分率变化范围为–6.4%––2.7%;qHD-3和qHD-8加性效应值较大,表现主效基因特征。为了进一步定位qHD-3和qHD-8,在目标区域加密16对SSR引物,qHD-3和qHD-8分别被界定在第3染色体RM3166–RM16206之间及第8染色体RM4085–RM8271之间,其遗传距离分别为13.9cM和6.4cM。研究结果为利用分子标记辅助选择改良水稻抽穗期奠定了基础。  相似文献   

9.
两种供氮水平下水稻生长后期相关性状的QTL定位   总被引:2,自引:0,他引:2  
以特青为母本与Lemont杂交,然后用特青为轮回亲本回交,建立特青背景下的染色体片段置换系(CSSL)群体。在正常和低氮条件下分别在生长后期对株高(PH)、单株穗数(PN)、叶绿素含量(CC)、地上部干物重(SDW)和单株籽粒产量(YD)等性状进行了QTL分析,共检测到31个QTL。其中在正常供氮水平下控制PH、PN、CC、SDW和YD的QTL数目均为3个;在低氮水平下检测到5、4、5和2个影响PH、PN、CC和SDW的QTL,在低氮水平下没有检测到控制YD的位点。大部分QTL集中在第2、3、7、11和12染色体上,影响不同性状或在两种供氮水平下影响同一性状的QTL在染色体上成串或成簇分布。其中RM30-RM439、RM18-RM478、RM309-RM270、RM235-RM17等区域同时检测到控制两个以上性状的QTL,表现出明显的一因多效现象。推测仅在低氮水平下检测到的QTL可能跟水稻对低氮胁迫耐性有一定的关联。  相似文献   

10.
基于CSSL的水稻抽穗期QTL定位及遗传分析   总被引:1,自引:0,他引:1  
抽穗期是水稻(Oryza sativa)品种的重要农艺性状之一, 适宜的抽穗期是获得理想产量的前提。鉴定和定位水稻抽穗期基因/QTL, 分析其遗传效应对改良水稻抽穗期至关重要。以籼稻品种9311(Oryza sativa ssp. indica ‘Yangdao 6’)为受体,粳稻品种日本晴(Oryza sativa ssp. japonica ‘Nipponbare’)为供体构建的94个染色体片段置换系群体为材料, 以P≤0.01为阈值, 对置换片段上的抽穗期QTL进行了鉴定。采用代换作图法共定位了4个控制水稻抽穗期的QTL, 分别位于第3、第4、第5和第8染色体; QTL的加性效应值变化范围为–6.4 – –2.7, 加性效应百分率变化范围为–6.4%– –2.7%; qHD-3和qHD-8加性效应值较大, 表现主效基因特征。为了进一步定位qHD-3和qHD-8, 在目标区域加密16对SSR引物, qHD-3和qHD-8分别被界定在第3染色体RM3166–RM16206之间及第8染色体RM4085-RM8271之间, 其遗传距离分别为13.9 cM和6.4 cM。研究结果为利用分子标记辅助选择改良水稻抽穗期奠定了基础。  相似文献   

11.
利用以栽培稻9311为受体、普通野生稻为供体的染色体单片段置换系CSSL182,检测到一个与粒宽相关的QTL。CSSL182与受体亲本9311粒型性状差异显著,且只在8号染色体有一个野生稻导入片段。构建CSSL182/9311的F2次级分离群体,将粒宽QTL初定位在8号染色体的标记RM447和RM264之间,贡献率达22.49,将该QTL命名为qGW8。随后进一步设计区间内多态性分子标记引物,检测F2群体的2000株分离个体以及F2:3群体交换单株,结合后代表型验证,最终将qGW8精细定位到8号染色体10kb区间内。该区间内含有3个候选基因,基因测序发现这3个基因在双亲之间均含有丰富的变异。对双亲籽粒颖壳细胞电镜扫描观察发现,CSSL182的颖壳细胞宽度比9311减少16.7%。这一结果表明qGW8中来自野生稻的等位基因通过改变颖壳细胞形状影响粒型。  相似文献   

12.
Grain size traits are critical agronomic traits which directly determine grain yield, but the genetic bases of these traits are still not well understood. In this study, a total of 154 chromosome segment substitution lines (CSSLs) population derived from a cross between a japonica variety Koshihikari and an indica variety Nona Bokra was used to investigate grain length (GL), grain width (GW), length-width ratio (LWR), grain perimeter (GP), grain area (GA), and thousand grain weight (TGW) under four environments. QTL mapping analysis of six grain size traits was performed by QTL IciMapping 4.2 with an inclusive composite interval mapping (ICIM) model. A total of 64 QTLs were identified for these traits, which mapped to chromosomes 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12 and accounted for 1.6%–27.1% of the total phenotypic variations. Among these QTLs, thirty-six loci were novel and seven QTLs were identified under four environments. One locus containing the known grain size gene, qGL3/GL3.1/OsPPKL1, also have been found. Moreover, five pairs of digenic epistatic interactions were identified except for GL and GP. These findings will facilitate fine mapping of the candidate gene and QTL pyramiding to genetically improve grain yield in rice.  相似文献   

13.
水稻低温发芽力QTL定位和遗传分析   总被引:5,自引:0,他引:5  
以Kinmaze(粳稻)/DV85(籼稻)的重组自交系F10世代群体检测了影响水稻低温发芽力性状的数量性状基因座(QTL)。通过测定不同时期的低温发芽率,确定了15℃低温、第10d为检测低温发芽率的最适处理温度和时间,该条件下能够充分检测到品种的差异和分离群体的变异。通过设置对照,证明所检测的低温发芽率不受休眠及二次休眠的影响。15℃低温、第10d时,Kinmaze的发芽率达35%,DV85的发芽率只有7%,两亲本之间存在明显差异,该群体81个家系的低温发芽率变幅在0%~99%之间。QTL分析结果检测到5个与低温发芽力相关的基因座,分别位于第2、6、7、11和12染色体上。位于第2、6和11染色体上的qLTG-2、qLTG-6和qLTG-11贡献率分别为27.1%、17.1%和15.0%,对低温发芽力性状的增效基因来自DV85;位于第7、12染色体上qLTG-7和qLTG-12的贡献率分别为22.9%和8.8%,增效基因来自Kinmaze。其中,qLTG-6和qLTG-11在染色体上的位置与已报道的有关低温发芽力QTL位置相似,而qLTG-2、qLTG-7和qLTG-12为新检测的低温发芽力基因座。上位性分析结果显示,第3与第5染色体上存在影响低温发芽力的互作位点,其互作可以提高低温发芽力,而第7染色体上的两位点之间的互作降低了低温发芽力。  相似文献   

14.
Aluminum (Al) toxicity is considered as one of the primary causes of low-rice productivity in acid soils. In the present study, quantitative trait loci (QTLs) controlling Al resistance based on relative root elongation (RRE) were dissected using a complete linkage map and a recombinant inbred lines (RILs) derived from a cross of Al-tolerant japonica cultivar Asominori (Oryza sativa L.) and Al-sensitive indica cultivar IR24 (O. sativa L.). A total of three QTLs (qRRE-1, qRRE-9, and qRRE-11) were detected on chromosomes 1, 9, and 11 with LOD score ranging from 2.64 to 3.60 and the phenotypic variance explained from 13.5 to 17.7%. The Asominori alleles were all associated with Al resistance at all the three QTLs. The existence of these QTLs was confirmed using Asominori chromosome segment substitution lines (CSSLs) in IR24 genetic background (IAS). By QTL comparative analysis, the two QTLs (qRRE-1and qRRE-9) on chromosomes 1 and 9 appeared to be consistent among different rice populations while qRRE-11 was newly detected and syntenic with a major Al resistance gene on chromosome 10 of maize. This region may provide an important case for isolating genes responsible for different mechanisms of Al resistance among different cereals. These results also provide the possibilities of enhancing Al resistance in rice breeding program by marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

15.
利用籼粳回交群体分析水稻粒形性状相关QTLs   总被引:10,自引:1,他引:10  
水稻谷粒的外观性状对稻米外观品质存在重要的影响。该研究利用SSR标记,以回交群体Balilla/NTH∥Balilla为作图群体,构建了水稻12条染色体的连锁图,该遗传图谱包括:108个分子标记,平均图距为11.9cM。以构建的遗传图谱为基础,采用区间作图法对谷粒外观性状,包括粒长、粒宽和粒形进行了数量性状基因(QTL)定位。结果表明,粒长、粒宽和粒形在回交群体中均呈近似的正态分布,表现出典型的数量性状特征。QTL定位结果表明,第12染色体上RM101-RM270区间内存在一个与粒长性状相关的QTL,(qGL-12),加性效应约为0.26mm,贡献率为16.7%。在第2和第3染色体上RM154-RM211和RM257-RM175区问内,分别检测到qGW-2和qGW-3两个位点与粒宽性状有关,加性效应为分别为-0.10mm和-0.12mm,贡献率分别为11.5%和16.6%。对于粒形性状,共检测到3个QTLs,qLW-2、qLW-6和qLW-7,分别位于第2、6和7染色体上。其中qLW-2和qLW-7的加性效应分别约为0.09和0.10,两个QTLs分别可解释表型变异的12.7%和18.3%;而qLW-6的加性效应约为-0.13,可解释粒形变异的11.5%。文中还讨论了粒形和稻米外观品质同时改良的可能性。  相似文献   

16.
以粳稻Asominori与籼稻IR24所衍生的染色体片段置换系(CSSL)为材料,于2003年和2004年连续2年在FACE(free air CO2 enrichment,大气CO2浓度增加200μmol/mol)和正常大气CO2浓度(约370μmol/mol)下,分析了控制单株产量、有效分蘖数、每穗实粒数和千粒重的数量性状位点(QTL)。结果表明,2年共检测到36个控制产量性状的QTL,分布在除第5、10和11染色体的各条染色体上。其中,仅有位于第1染色体上靠近XNbp113标记的1个控制千粒重的QTL,在2年的FACE和对照下都被检测到,并且其加性效应均来自IR24,但其贡献率在各个年份和两CO2浓度下却表现不同。另外,36个QTL中,2个QTL(qTGW1-3QE和qFT3-3QE)被检测到具有显著的基因型×环境互作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号