首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the effect of heavy ions in plants, dry seeds of Arabidopsis were irradiated with carbon, neon, and argon ions with various linear energy transfer (LET) values. The relative biological effectiveness (RBE) for lethality peaked at LET values over 350 keV/microns for neon and argon ions. This LET giving the peak RBE was higher than the LET of 100-200 keV/microns which was reported to have a maximum RBE for other types of cells, such as mammalian cells. Furthermore, sterility showed a higher RBE at an LET of 354 keV/microns with neon ions than that at an LET of 113 keV/microns with carbon ions. Lethality and sterility are both considered to be caused by damage to DNA. The results indicate that the LET having a maximum of RBE for lethality is higher in Arabidopsis seeds than in other unicellular systems. The most likely explanation for this shift of LET is that the DNA in dry seeds has a different chemical environment and/or hydration state than the DNA in cells in culture.  相似文献   

2.
The combined effects of heavy-ion radiation and hyperthermia on the survival of CHO-SC1 cells and its temperature-sensitive (ts) mutant tsH1 cells were studied using accelerated neon ions followed by mild heating at 41.5 degrees C. The sequence of application of heat and high-LET radiation is significant to cell-killing effects. Heat applied to cells prior to irradiation with neon plateau ions (LET = 32 keV/microns) was less effective than heat applied immediately after irradiation. The ability of cells to synthesize new proteins plays a key role in this sequence-dependent thermal sensitization. When protein synthesis was shut down in tsH1 cells, the thermal enhancement of cell killing by high-LET radiation was the same regardless of the sequence. The thermal enhancement of radiation-induced cell killing was LET-dependent for the SC1 cells, but this was not clearly demonstrated in the tsH1 cells. Furthermore, the RBE of heated SC1 cells varied with LET and reached a maximum of greater than 3 at 80 keV/microns. In the absence of protein synthesis, the maximum RBE value was reduced to 2.6. These results suggest that the accumulation of cellular damage caused by exposure to densely ionizing particles with increasing LETs can be potentiated with active protein synthesis during postirradiation heat treatment.  相似文献   

3.
Quantitative cancer incidence data exist for various laboratory animal models, but little of this information is usable for estimating human risks, primarily because of uncertainties about possible mechanistic differences among species. Acceptance and utilization of animal data for human risk assessment will require a much better understanding of the comparative underlying mechanisms than now exists. A dual-lesion, radiation-track model in rat skin has proven to be consistent with tumor induction data with respect to acute radiation doses ranging from 0.5 up to 10 Gy and higher, and average LETs ranging from 0.34 to 150 keV μm−1 according to the form neoplastic risk (D,L) = CLD + BD2. A recent result with the 56Fe ion beam showed dose-response consistency for malignant (carcinomas) and benign (fibromas) tumor induction with earlier results utilizing argon and neon ion beams. A discrepancy between the model and experiment was found indicating that proportionality of cancer yield with LET did not occur at 150 versus 125 keV μm−1, i.e. tumor yield did not increase in spite of a 20% increase of LET, which suggests that a LET response maximum exists at or within this dose range. Concordance between the model and tumor induction data in rat skin implies that potential intervening complexities of carcinogenic progression fail to obscure the basic radiobiological assumptions underpinning the model. Gene expression microarray analysis shows that vitamin A inhibits the expression of about 80% of the inflammation-related genes induced by the radiation and prevents about 46% of the neoplasms associated with 56Fe ion radiation without appearing to interfere with the underlying dose and LET response patterns. Further validation is needed, but the model has the potential to provide quantitative estimates of cancer risk as a function of dose and LET for almost any type of radiation exposure and even for combinations of different radiations provided only three empirical parameters can be established for each type of radiation and organ system.  相似文献   

4.
An activated K-ras oncogene was detected by transfection in NIH 3T3 cells and by Southern blot analysis in 6 of 12 rat skin tumors induced by ionizing radiation. The DNA from 10 of the 12 tumors also showed c-myc gene amplification and restriction polymorphisms. Evidence for tissue specificity was observed in patterns of oncogene activation, with each of three clear cell carcinomas exhibiting activation of both c-myc and K-ras oncogenes.  相似文献   

5.
Results are reported of studies to measure the extent of recovery of potentially lethal damage (PLD) in rat rhabdomyosarcoma tumor cells after irradiation both in vivo and in vitro with either high-LET or low-LET radiation. Stationary-phase cultures were found to exhibit repair of PLD following irradiation in vitro either with low-LET X rays or with high-LET neon ions in the extended-peak ionization region. Following a 9-Gy dose of 225-kVp X rays or a 3.5-Gy dose of peak neon ions, both of which reduced the initial cell survival to 6-8%, the maximum PLD recovery factors were 3.4 and 1.6, respectively. In contrast, the standard tumor excision assay procedure failed to reveal any recovery from PLD in tumors irradiated in situ with either X rays or peak neon ions. PLD repair by the in vivo tumor cells could be observed, however, when the excision assay procedure was altered by the addition of a known PLD repair inhibitor beta-arabinofuranosyladenine (beta-ara-A). When a noncytotoxic 50 microM concentration of beta-ara-A was added to the excised tumor cells immediately following a 14.5-Gy in situ dose of X rays, cell survival in the inhibitor-treated cells was lower than in the untreated cells (0.018 compared to 0.056), resulting in a PLD repair inhibition factor of 3.1. Delaying the addition of beta-ara-A for 1, 2, or 3 h following tumor excision reduced the PLD repair inhibition factor to 1.6, 1.5, and 0.9, respectively. Following tumor irradiation in situ with neon ions in the extended-peak ionization region (median LET = 145 keV/micron), less PLD repair was observed than after X irradiation. For 5.8 Gy of peak neon ions, the PLD repair inhibition factors were 2.1, 1.5, 1.3, and 1.1 at 0, 1, 2, and 3 h, respectively. We interpret the absence of measurable PLD repair using the standard tumor excision assay procedure as resulting from undetectable repair occurring during the long interval (about 2 h) required for the cell dissociation and plating procedures. We conclude that at least for our tumor system, PLD repair does occur after irradiation of tumors in situ, even though it is not detectable using the standard tumor excision assay procedure. Thus a failure to measure such repair by this assay in a given tumor system does not necessarily mean the cells are incapable of PLD repair.  相似文献   

6.
Biological and molecular aspects of radiation carcinogenesis in mouse skin   总被引:1,自引:0,他引:1  
The process of mouse skin carcinogenesis can be operationally subdivided into at least three stages which have been termed initiation, promotion, and progression. Ionizing radiation has been found to be a weak initiator of malignant squamous cell carcinomas (SCCs) when radiation was followed by repeated treatments of the skin with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Besides SCCs, ionizing radiation was found to induce, independent of tumor promoters, basal cell carcinomas (BCCs), a tumor histology not normally seen with chemical carcinogens and mouse skin. Fractionated doses of 1 MeV electrons were found to enhance the conversion of chemically induced benign papillomas to malignant SCCs. In addition to the biological studies, questions related to dominant transforming genes and differential gene expression in the radiation-initiated mouse skin tumors have been explored. Distinct non-ras dominant transforming gene(s) have been detected in radiation-initiated, TPA-promoted SCCs. Differences in the expression pattern of tumor-associated genes were seen in comparing chemically to radiation-induced benign and malignant skin tumors. Therefore, ionizing radiation has been shown to be active in the initiation of malignant skin tumors and progression of benign to malignant tumors in the mouse skin. The ability to divide the process of carcinogenesis into multiple stages in the mouse skin model has facilitated mechanistic studies that may elucidate the molecular pathways involved in radiation-versus chemically induced tumor development.  相似文献   

7.
To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425keV/μm) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113keV/μm). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113keV/μm carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>~30kb) were six times more frequently induced by carbon ions near the range end. When 352keV/μm neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113keV/μm carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.  相似文献   

8.
Amplification of the c-myc oncogene has been detected by Southern blotting in the DNA of radiation-induced skin cancers in the rat. In the current work the localization of oncogene amplification within specific cells in the different cancers and in multiple biopsies of the same cancer was studied by in situ hybridization. The amount of amplification was measured by counting grains on tissue sections hybridized in situ to biotin-labeled human c-myc third exon, rat v-H-ras, and rat v-Ki-ras probes. The in situ estimates of c-myc amplification were generally correlated with previous findings using the Southern blot method, but within each cancer only a fraction of cells exhibited amplification. Multiple biopsies of a squamous carcinoma showed amplification of v-H-ras and c-myc but not v-Ki-ras during tumor growth, but none of these oncogenes were amplified during tumor regression. The c-myc-positive cells were distributed uniformly within the cancers and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc-negative cells. A high [3H]thymidine labeling index was found in irradiated epidermal cells on Day 7 after exposure, and yet no evidence of c-myc oncogene amplification was found in situ. No c-myc amplification was found in unirradiated normal epidermis or in irradiated epidermal cells in the vicinity of radiation-induced cancers. The data indicate that c-myc amplification is cell-specific within radiation-induced carcinomas and does not occur in epidermal cells proliferating in response to radiation exposure.  相似文献   

9.
To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions generated by HIMAC at NIRS and BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis focusing on the dependencies of (1) the animal strains with different radiation sensitivities, and (2) LET with different nuclei. Of the three mouse strains, SCID, B6 and C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to both X-ray and carbon ion ( 290 MeV/n) as evaluated by 10% apoptotic criterion. However, the sensitivity differences among the strains were much smaller in case of carbon ion comparing to that of X-ray. Regarding the LET dependency, the sensitivity was compared with using C3H and B6 cells between the carbon (13 keV/micrometers) and neon (70 keV/micrometers) ions. Carbon (290 MeV/n) did not give a detectable LET dependency from the criterion whereas the neon (400 MeV/n) showed 1.4 fold difference for both C3H and B6 cells. Although a LET dependency was examined by using the most sensitive SCID cells, no significant difference was detected.  相似文献   

10.
We studied the LET and ion species dependence of the RBE for cell killing to clarify the differences in the biological effects caused by the differences in the track structure that result from the different energy depositions for different ions. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon, neon, silicon and iron ions that were generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Science (NIRS) in Japan. Cell killing was measured as reproductive cell death using a colony formation assay. The RBE-LET curves were different for carbon ions and for the other ions. The curve for carbon ions increased steeply up to around 98 keV/microm. The RBE of carbon ions at 98 keV/microm was 4.07. In contrast, the curves for neon, silicon and iron ions had maximum peaks around 180 keV/microm, and the RBEs at the peak position ranged from 3.03 to 3.39. When the RBEs were plotted as a function of Z*2/beta2 (where Z* is the effective charge and beta is the relative velocity of the ion) instead of LET, the discrepancies between the RBE-LET curves for the different ion beams were reduced, but branching of the RBE-Z*2/beta2 curves still remained. When the inactivation cross section was plotted as a function of either LET or Z*2/beta2, it increased with increasing LET. However, the inactivation cross section was always smaller than the geometrical cross section. These results suggest that the differences in the energy deposition track structures of the different ion sources have an effect on cell killing.  相似文献   

11.
The effectiveness of S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR 2721) to protect against the heavy-charged particle beams with dose-averaged LET infinity's ranging from 26 to 260 keV/micron was studied using the marrow colony forming units-spleen as a model system. WR 2721 (400 mg/kg) was injected ip 30 min before whole-body irradiation in the plateau ionization region of the Bragg curve. Significant protection was observed at 26, 51, and 135 keV/micron LET values where the data were collected with 20Ne, 28Si, and 40Ar ions, respectively. The largest component of protection was the slope change, where at LET values of 26 and 51 keV/micron the DMFs (slope) were 2.1 and 2.3, respectively, which are very close to the gamma-ray value of 2.4 (gamma LET approximately equal to 0.2 keV/micron). Protection, however, decreased with increase in LET from 51 to 135 keV/micron to the DMF value of 1.2 and no significant protection was observed against 56Fe ions at 260 keV/micron. Significant increases in extrapolation number occurred with gamma rays and neon particles. The results are discussed in terms of charged particle track structure, radiation chemistry, and potential clinical applications.  相似文献   

12.
Stochastic radiation effects following exposure to heavy ions and other high linear energy transfer (LET) radiation in space are a matter of concern when the long-term consequences of space flights are considered. This paper is an overview of the relevant literature, emphasizing uncertainties entailed from estimates of relative biological effectiveness (RBE) for different experiment end-points, making the choice of a single weighting factor for the prediction of cancer risk in man extremely difficult. Life-span-shortening studies in mice exposed to heavy ions and ongoing large-scale experiments in monkeys exposed to protons suggest that RBEs for all cancers are lower than 5. This does not exclude a much higher RBE for rare tumors such as brain tumors in monkeys or promoted Harderian gland tumours in mice at LET >80 keV/µm. Skin cancer studies in rats exposed to neon or argon resulted in similar RBE. Exposure to fission neutrons led to high RBE in all species, not excluding values much higher than 20 for specific cancers such as lung tumors in mice and all cancers in rats. The estimate of maximal RBE is, however, extremely dependent on the hypothesis made on the shape of the dose-response curves in the lower range of doses. These results suggest that neutrons may be the most hazardous component of high-LET radiation. There is only limited evidence from cancer experiments that LET >150 keV/µm results in highly decreased efficiency, but this has been found for bone cancer induction following exposure to fission fragments.Invited paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

13.
In studying E. coli mutation rate as a function of dose of different types of ionizing radiation it was found that mutagenic efficiency of helium ions (LET-22, 54 and 72 keV/microns) was higher than that of gamma-rays. As LET increased the mutagenic efficiency decreased. The mutation rate for all types of radiation under study was both a power function and a linear-quadratic function of dose.  相似文献   

14.
The ability of ion beams to kill or mutate plant cells is known to depend on the linear energy transfer (LET) of the ions, although the mechanism of damage is poorly understood. In this study, DNA double-strand breaks (DSBs) were quantified by a DNA fragment-size analysis in tobacco protoplasts irradiated with high-LET ions. Tobacco BY-2 protoplasts, as a model of single plant cells, were irradiated with helium, carbon and neon ions having different LETs and with gamma rays. After irradiation, DNA fragments were separated into sizes between 1600 and 6.6 kbp by pulsed-field gel electrophoresis. Information on DNA fragmentation was obtained by staining the gels with SYBR Green I. Initial DSB yields were found to depend on LET, and the highest relative biological effectiveness (about 1.6) was obtained at 124 and 241 keV/microm carbon ions. High-LET carbon and neon ions induced short DNA fragments more efficiently than gamma rays. These results partially explain the large biological effects caused by high-LET ions in plants.  相似文献   

15.
Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated.  相似文献   

16.
Yields of DNA double-strand breaks were determined in primary human skin fibroblasts exposed to 1H and 4He ions at various linear energy transfers (LETs) and to 15 MeV electrons as the reference radiation. The values obtained for the relative biological effectiveness (RBE) were 2.03, 1.45 and 1.36 for 1H ions at LETs of 35, 23 and 7.9 keV/microm, respectively, and 1.2, 1.18, 1.38 and 1.31 for 4He ions at LETs of 124, 76, 35 and 27 keV/microm, respectively. The data were obtained using pulsed-field gel electrophoresis of DNA released from cells using the chromosomes of the yeast Saccharomyces cerevisiae as length markers and fitting the experimental mass distributions of fragmented DNA to those obtained by computer simulation of the random breakage of human chromosomes. The RBE values for induction of DSBs in mammalian cells cannot be fitted to a common RBE-LET relationship for electrons and 1H, 4He and light ions. Comparison of the RBEs for mammalian cells with the corresponding RBEs obtained for yeast cells shows similar RBEs of electrons for yeast and mammalian cells; however, for 4He and light ions in the LET range of 100 to 1000 keV/microm, the RBEs for yeast are significantly higher compared with mammalian cells. These characteristics of the RBE-LET relationships for yeast and mammalian cells are attributed to the fraction of small DNA fragments induced by particles when traversing the higher-order chromatin structures which are different to some extent in these two cell types.  相似文献   

17.
This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.  相似文献   

18.
Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ~ 151 keV/μm), 600 MeV/u silicon ions (LET ~ 51 keV/μm), or 1 GeV protons (LET ~ 0.2 keV/μm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-μm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy.  相似文献   

19.
Amplification of the N-myc oncogene in an adenocarcinoma of the lung   总被引:2,自引:0,他引:2  
c-myc oncogene is the most extensively studied member of the myc gene family, which now consists of three characterized members, namely the c-myc, N-myc, and L-myc genes. Deregulation owing to amplification and/or rearrangements of the c-myc gene have been described in a variety of human malignancies. Several neuroblastomas have amplifications of the N-myc genes. The c-myc, N-myc, or L-myc oncogenes are also found amplified in different cell lines from small cell carcinomas of the lung. In this study, we have examined the c-myc, N-myc, and c-erbB oncogenes in 34 clinical and autopsy tumor specimens representing various histopathological types of human lung cancer, including nine small cell lung cancers. A 30-fold amplification of the N-myc gene was found in a tumor histopathologically and histochemically verified as a typical adenocarcinoma. No amplifications of the c-myc or c-erbB oncogenes were seen in any of the tumors. In the DNA of one small cell carcinoma, an extra c-myc and N-myc cross-hybridizing restriction fragment was observed, possibly owing to an amplification of a yet uncharacterized myc-related gene.  相似文献   

20.
Squamous cell lung carcinomas from 10 untreated patients were examined for the state of the oncogene c-myc. Blot hybridization experiments have demonstrated the amplification of the oncogene of about six fold in only one tumor. The oncogene amplification was not detected in normal tissues of patients. The analysis of RNA by Northern blot revealed the presence in the seven tumors examined of a 2.4 kb c-myc RNA band. The level of c-myc expression evaluated by dot blot analysis was 5 to 14 fold greater in tumors than that of histologically normal lung of the same patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号