首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recorded and characterized the echolocation calls emitted by the common vampire bat Desmodus rotundus during foraging in natural habitats in Chile. Signal design typically shows multiple harmonics consisting of a brief quasi-constant frequency (QCF) component at the beginning of the pulse followed by a downward frequency modulated component. Calls are characterized by long durations (5.5 ms) and emitted as single pulses or in groups of 2–3 pulses at a repetition rate of 29 Hz. The higher frequency ranges (85–35 kHz) and the unusual QCF component that characterized multiharmonic signals of free-flying D. rotundus in Chile is a remarkable feature for acoustic identification with other Chilean bats.  相似文献   

2.
The reactivity with nitric oxide was investigated for a number of type-1, type-2 and type-3 copper proteins azurin from Pseudomonas aeruginosa (type-1 copper); bovine superoxide dismutase, diamine oxidase from pig kidney and galactose oxidase from Dactylium dendroides (type-2 copper); haemocyanin from Helix pomatia (type-3 copper); the blue oxidases ceruloplasmin from pig serum, and ascorbate oxidase from Cucurbita pepo medullosa. Type-1 copper formed complexes with NO in the oxidised state, which complexes were only fully formed at low temperatures and could be photodissociated at 77K. Complex formation led to the disappearance of the EPR signal of type-1 copper and of the optical absorbance band in the 600 nm region. In azurin, photodissociation caused the reappearance of the original 625 nm absorbance band, but in the blue oxidases, a new band with lower intensity was found at 595 nm instead of the original absorbance band at 610 nm. In all cases, the EPR signal of type-1 copper did not return. These results are best explained by the formation of a photolabile type-1 Cu1+-NO+ complex. They also indicate that in the complex formed, the type-1 copper structure is probably not disrupted, and that after illumination, the nitric oxide molecule is still in the near vicinity of the copper atom. Type-2 copper did not react at all with nitric oxide, and type-3 copper formed complexes with nitric oxide in both the oxidised and the reduced state, but photodissociation of these complexes could not be demonstrated.  相似文献   

3.
The localization of a sum of acoustic signals by two northern fur seals in air depending on sound parameters was investigated using the method of instrumental conditioned reflexes with food reinforcement. It was found that sound perception of northern fur seal proceeds by the binaural mechanism. The time/intensity interchange coefficient was 570 microseconds/dB for series of clicks (with amplitude maximum at 1 kHz) and 250 microseconds/dB for tonal impulses with a frequency of 1 kHz. With click amplitudes being equal, the number of approaches of the animal to the source of the first signal reached a 75% level at a delay of the second signal 0.07 ms (the minimum delay); with a delay of 6 ms (the maximum delay) and more, the fur seal, probably hears two separate signals. The minimum delay depended little on the duration of tonal impulses (with a frequency of 1 kHz) and was 0.3-0.7 ms; the maximum delay was 9-11 ms for tonal impulses with a duration of 3 ms and 37-40 ms with impulse duration 20 ms. The precedence effect became apparent at a greater delay for smooth fronts of impulses than for rectangular fronts.  相似文献   

4.
The presence of harmonic products due to possible nonlinear interaction of amplitude modulated RF signals in living cells is best detected by using a cavity with high quality factor. Harmonic products generated by elementary oscillators can be trapped and accumulated in a cavity, permitting detection sensitivity much greater than in an open environment, where they would be radiated in all directions. The experimental method described herein is a systematic approach to detection of the non-Planck RF energy (if any) emitted by an exposed sample of living cells. Balzano and Sheppard [Balzano and Sheppard (2003): Bioelectromagnetics 24:473-482] classified the non-Planck RF emissions from living cells as coming from (1). nonlinear interactions and (2). inelastic interactions. Nonlinear harmonic products would appear in the band at twice the frequency of an amplitude modulated RF carrier. Inelastic interaction products resulting from the interaction between the incident RF energy and normally occurring mechanical vibrations are found in the band immediately adjacent to the carrier. Detection of the latter signals is difficult because of this close spectral proximity, for example, 1 part in 10(7) for 100 Hz modulation of a GHz carrier. Modern audio spectrum analyzers have excellent selectivity, providing 60 dB rejections only 2 kHz away from the carrier. By judicious selection of the amplitude modulation (AM) frequency, frequency of the RF carrier, and size of the biological sample, it is possible to achieve very high sensitivity (about -90 dBm) with commercially available instrumentation. The presence (or absence) of harmonics in the band adjacent to the amplitude modulated RF carrier would establish (or negate) the existence of coherent interactions between mechanical vibrations in the cell ensemble and the incident RF signal.  相似文献   

5.
Aperonotus leptorhynchus (Gymnotiformes) produces wave-like electric organ discharges distinguished by a high degree of constancy. Transient frequency and amplitude modulations of these discharges occur both spontaneously and during social interactions, which can be mimicked by external electrical stimulation. The so-called chirps can be divided into four different types. Independent of the type of chirp produced under spontaneous conditions, the fish generate only significant numbers of type-2 chirps under evoked conditions. The rate of production of chirps of this type is largely determined by the frequency relative to the fish's frequency and signal intensity. Frequencies of + 10 Hz of the fish's own discharge frequency most effectively elicit chirps. Type-2 chirps can also be evoked through stimulation at or near the higher harmonic frequencies of the fish's frequency, but the chirp rate decreases with increasing number of the higher harmonic component. Over a certain range, the rate of production of type-2 chirps increases with increasing stimulus intensity. At very high intensities the generation of type-2 chirps is accompanied by the production of a novel type of electrical signal ("abrupt frequency rise") characterized by a frequency increase of approximately 20 Hz and high repetition rates of roughly 10 s(-1). We hypothesize that the different types of electric modulations subserve different behavioral functions.  相似文献   

6.
ABSTRACT

We recorded echolocation and ultrasonic social signals of the bat Myotis septentrionalis. The bats foraged for insects resting on or fluttering about an outdoor screen to which they were attracted by a ‘backlight’. The bats used nearly linearly modulated echolocation signals of high frequency (117 to 49 kHz, see Tables) with a weak second harmonic. The orientational signals from patrolling bats were about 2.4 ms in duration and occurred at a repetition rate of about 18 Hz (see Figure 3). The signals used by bats as they approached the screen were of shorter duration (0.72 ms) and occurred at higher rates (33.8 Hz) (Table 2 and Figure 4). We registered one feeding ‘buzz’ (Figure 5). We recorded social signals when two bats patrolled the hunting area. The social signals were characterized by their longer durations (6 ms, see Table 1), lower frequencies (70 to 30 kHz), and curvilinear sweeps (Figures 7 and 8). We calculated the source levels of orientational and social signals using the differences in arrival times at three microphones in a linear array (Figures 1 and 2). The source levels were on average 102 dB peSPL at 10 cm (Table 1). We could not calculate source levels of the signals used by bats as they approached the screen at close range, but these signals were much weaker (about 65 dB peSPL at the microphone).  相似文献   

7.
Echo thresholds were measured for two configurations of loudspeakers in the vertical plane. The first configuration was characterized by the lead sound presentation from a loudspeaker placed in front of a subject, whereas the lag sound was presented from the loudspeaker above the subject's head. In the second configuration, the lead and lag sounds were presented from the same loudspeakers but in reverse order. All the stimuli were broadband noise bursts in the frequency range of 5-20 kHz. Burst durations were 5, 10, 20, and 100 ms. Average echo thresholds differences were significant only for the signals of 100 ms in duration (F (1, 16) = 6.28; p < 0.05). For the other signals (5, 10, 20 ms), there was no significant effect of location of lead and lag signals (p > 0.05).  相似文献   

8.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

9.
Our study estimates detection thresholds for tones of different durations and frequencies in Great Tits (Parus major) with operant procedures. We employ signals covering the duration and frequency range of communication signals of this species (40–1,010 ms; 2, 4, 6.3 kHz), and we measure threshold level-duration (TLD) function (relating threshold level to signal duration) in silence as well as under behaviorally relevant environmental noise conditions (urban noise, woodland noise). Detection thresholds decreased with increasing signal duration. Thresholds at any given duration were a function of signal frequency and were elevated in background noise, but the shape of Great Tit TLD functions was independent of signal frequency and background condition. To enable comparisons of our Great Tit data to those from other species, TLD functions were first fitted with a traditional leaky-integrator model. We then applied a probabilistic model to interpret the trade-off between signal amplitude and duration at threshold. Great Tit TLD functions exhibit features that are similar across species. The current results, however, cannot explain why Great Tits in noisy urban environments produce shorter song elements or faster songs than those in quieter woodland environments, as detection thresholds are lower for longer elements also under noisy conditions.  相似文献   

10.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

11.
False Vampires ( Megaderma lyra ) are gleaning bats which emit brief (1 ms) and faint echolocation signals consisting of four harmonics of a shallow frequency downward modulated fundamental (27–19 kHz). The complete signal spans a frequency range from 100 to 19 kHz. In sound recordings from three experimental animals we show that Megaderma lyra shifts the dominant frequency in the echolocation signals in relation to the type of prey offered and to flight style. During roaming flights the mean peak frequency was 63.2 ± 9 kHz (third harmonic). In prey catching flights, peak frequencies were shifted into the fourth harmonic. In flights towards a dish of crawling mealworms, mean peak frequency was raised to 91.2 ± 3.3 kHz. When the bats flew towards living mice the dominant frequency was further increased to 99.8 ± 5.2 kHz, and the second and third harmonic were at least 10 dB fainter or no longer recordable. The additional frequency shift when flying towards mice was not only a consequence of the dominance of the fourth harmonic but also of an additional rise of the fundamental harmonic by nearly 2 kHz. These prey-correlated frequency shifts in echolocation calls showed little variation between the three experimental animals and were reproducible over time. They occurred at or even before take-off of the bats. This is the first report of target-correlated transient adaptations in echolocation calls of any bat species.  相似文献   

12.
本文报道庐山鸣鸣蝉自鸣声信息的长码与短码结构及其部分频谱的双倍频特征。庐山鸣鸣蝉多次重复的“MUYING……MUYING MU A”叫声,仅由三种信息MU(简称M),YING(I)及“A”重复编排而成。M与A的特征类似:持续时间大于170ms,波形具有约为6ms的周期,频谱主峰频率(MPF)约为4kHz,谱能量主要分布在2—7kHz频带内。这是鸣鸣蝉自鸣声长码的近似不变特征。长码I与M,A的不同点是持续期多在300ms以上,MPF为变频特征,在2.7—7.2kHz之间变化,谱能量较均匀地分布在0—14kHz频带内。约为6ms的准周期内含有几个频率不同的脉冲串(PT),这些不同频率的PT称为短码。这表明鸣鸣蝉自鸣声中长码是由变频短码组成的。M与A部分频谱具有双倍频特征,即构成频谱的子谱峰频率为两个倍频序列,其中一序列的共振峰为主峰,另一序列的共振峰为次峰。  相似文献   

13.
Summary Echolocating bats judge the distance to a target on basis of the delay between the emitted cry and the returning echo. In a phantom echo set-up it was investigated how changes in the time-frequency structure of synthetic echoes affect ranging accuracy of big brown bats, Eptesicus fuscus.A one channel phantom target simulator and a Y/N paradigm was used. Five Eptesicus fuscus were trained to discriminate between phantom targets with different virtual distances (delays). The phantom echo was stored in a memory and broadcast from a loudspeaker after a certain delay following the bat's triggering of the system via a trigger microphone. The ranging accuracy was compared using 5 different signals with equal energy as phantom echoes: a standard cry (a natural bat cry), two kinds of noise signals, a high pass, and a low pass filtered version of the standard cry.The standard cry was recorded from one of the bats while judging the distance to a real target. The duration was 1.1 ms, the first harmonic swept down from 55 to 25 kHz and there was energy also in the second and third harmonic. Both noise signals had the same duration, power spectrum, and energy as the standard cry. One noise signal was stored in a memory and hence was exactly the same each time the bat triggered the system. The other variable noise signal was produced by storing the envelope of the standard cry and multiplying on-line with band pass filtered noise. The time-frequency structure (e.g. rise time) of this noise signal changed from triggering to triggering. The filtered signals were produced by either 40 kHz high pass or 40 kHz low pass filtering of the standard cry.The range difference thresholds for the 5 bats were around 1–2 cm (51–119 us) using the standard cry as echo. The range difference threshold with both noise signals was 7–8 cm (around 450 s delay difference). The 40 kHz high pass filtered cry increased the threshold to approximately twice the threshold with the standard cry. With the 40 kHz low pass filtered cry the threshold was increased 2.5–3 times relative to the threshold with the standard cry. A single bat was tested with a signal filtered with a 55 kHz low pass filter leaving the whole first harmonic. The threshold was the same as that with the standard signal.The reduced ranging accuracy with the filtered signals indicates that the full band width of the first harmonic is utilised for ranging by the bats. The substantial reduction in accuracy with the noise signals indicates that not only the full band width but also the orderly time-frequency structure (the FM sweep) of the cry is important for ranging in echolocating bats.Abbreviations FM frequency modulated - CF constant frequency - peSPL peak equivalent sound pressure level - SD standard deviation - SE standard error of mean - EPROM erasable programmable read only memory - FFT fast Fourier transform - S/N signal-to-noise ratio  相似文献   

14.
1. The reaction of nitric oxide with oxidized and reduced ascorbate oxidase (L-ascorbate: oxygen oxidoreductase, EC 1.10.3.3) has been investigated by optical absorption measurements and electron paramagnetic resonance, and the results are compared with those of ceruloplasmin. 2. Upon anaerobic incubation of oxidized ascorbate oxidase with nitric oxide a decrease of the absorbance at 610 nm is found, which is due to an electron transfer from nitric oxide to Type-1 copper. 3. In the presence of nitric oxide the EPR absorbance of ascorbate oxidase decreases and shows predominatly a signal with characteristics of Type-2 copper (g parallel = 2.248; A parallel = 188 G), whereas the type-1 copper signal has vanished. 4. Comparison of the intensities of the EPR signals before and after NO-treatment points to the presence of one Type-2 and three Type-1 copper atoms per molecule of ascorbate oxidase. 5. It is shown that the changes in the optical and the EPR spectrum of ascorbate oxidase induced by nitric oxide are reversible. No difference in enzymic activity is found between the native enzyme and the NO-treated enzyme after removal of nitric oxide.  相似文献   

15.
The accuracy of the underwater and airborne horizontal localization of different acoustic signals by the northern fur seal was investigated by the method of instrumental conditioned reflexes with food reinforcement. For pure-tone pulsed signals in the frequency range of 0.5-25 kHz the minimum angles of sound localization at 75% of correct responses corresponded to sound transducer azimuth of 6.5-7.5 degrees +/- 0.1-0.4 degrees underwater (at impulse duration of 3-90 ms) and of 3.5-5.5 degrees +/- 0.05-0.5 degrees in air (at impulse duration of 3-160 ms). The source of pulsed noise signals (of 3-ms duration) was localized with the accuracy of 3.0 degrees +/- 0.2 degrees underwater. The source of continuous (of 1-s duration) narrow band (10% of c.fr.) noise signals was localized in air with the accuracy of 2-5 degrees +/- 0.02-0.4 degrees and of continuous broad band (1-20 kHz) noise, with the accuracy of 4.5 degrees +/- 0.2 degrees.  相似文献   

16.
Summary Bats of the speciesNoctilio albiventris, trained to discriminate differences in target distance, emitted pairs of pulses at a rate of 7–10/s, the first a constant frequency (CF) pulse of about 8 ms duration and 75 kHz frequency, followed after about 28 ms by a CF/FM pulse having a 6 ms, 75 kHz CF component that terminates in a 2 ms FM sweep to about 57 kHz.Loud free-running artificial pulses, simulating the bat's natural CF/FM echolocation sound, interfered with distance discrimination at repetition rates exceeding 5/s. Systematic modifications in the temporal and frequency structure of the artificial pulses resulted in orderly changes in the degree of interference. Artificial pulses simulating the natural CF or FM components alone had no effect, nor did 10/s white noise pulses, although constant white noise of the same intensity masked the behavior.Interference occurred when the CF of the artificial pulses was between 52 and 77 kHz, ending with a downward FM sweep of 25 kHz from the CF. For interference to occur there was a much more critical requirement that the FM sweep begin at approximately the frequency of the CF component. The FM sweep needed to be 11 kHz or greater bandwidth. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 30 ms, with maximal effect between 10 and 20 ms. However, a brief (2.0 ms) CF signal 2–27 ms before an isolated FM signal was as effective as a continuous CF component of the same duration.When coupled with the bat's own emissions, artificial CF/FM pulses interfered if they occurred after the bat's CF/FM pulse and before the next natural emission. A 2 ms FM sweep alone was effective in interfering with distance discrimination when it came 8–27 ms after the onset of the bat's own CF/FM pulse. Neither CF/FM nor FM artificial pulses interfered when they began during the bat's own emission. A 10 ms CF pulse alone had no effect at any time.These findings indicate thatN. albiventris uses both the CF and FM components of its short-CF/FM echolocation sound for distance discrimination. The CF onset activates a gating mechanism that, during a narrowly defined subsequent time window, enables the nervous system to process FM pulse-echo pairs for distance information, within a fairly broad frequency range, as long as the frequencies of the CF and the beginning of the FM sweep are nearly identical.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

17.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

18.
The precedence effect refers to the fact that humans are able to localize sound sources in reverberant environments. In this study, sound localization was studied with dual sound source: stationary (lead) and moving (lag) for two planes: horizontal and vertical. Duration of lead and lag signals was 1s. Lead-lag delays ranged from 1-40 ms. Testing was conducted in free field, with broadband noise busts (5-18 kHz). The listeners indicated the perceived location of the lag signal. Results suggest that at delays above to 25 ms in horizontal plane and 40 ms in vertical plane subjects localized correctly the moving signal. At short delays (up to 8-10 ms), regardless of the instructions, all subjects pointed to the trajectory near the lead. The echo threshold varied dramatically across listeners. Mean echo thresholds were 7.3 ms in horizontal plane and 10.1 ms in vertical plane. Statistically significant differences were not observed for two planes [F(1, 5) = 5.52; p = 0.07].  相似文献   

19.
The ubiquitous brain oscillations occur in bursts of oscillatory activity. The present report tries to define the statistical characteristics of electroencephalographical (EEG) bursts of oscillatory activity during resting state in humans to define (i) the statistical properties of amplitude and duration of oscillatory bursts, (ii) its possible correlation, (iii) its frequency content, and (iv) the presence or not of a fixed threshold to trigger an oscillatory burst. The open eyes EEG recordings of five subjects with no artifacts were selected from a sample of 40 subjects. The recordings were filtered in frequency ranges of 2 Hz wide from 1 to 99 Hz. The analytic Hilbert transform was computed to obtain the amplitude envelopes of oscillatory bursts. The criteria of thresholding and a minimum of three cycles to define an oscillatory burst were imposed. Amplitude and duration parameters were extracted and they showed durations between hundreds of milliseconds and a few seconds, and peak amplitudes showed a unimodal distribution. Both parameters were positively correlated and the oscillatory burst durations were explained by a linear model with the terms peak amplitude and peak amplitude of amplitude envelope time derivative. The frequency content of the amplitude envelope was contained in the 0–2 Hz range. The results suggest the presence of amplitude modulated continuous oscillations in the human EEG during the resting conditions in a broad frequency range, with durations in the range of few seconds and modulated positively by amplitude and negatively by the time derivative of the amplitude envelope suggesting activation-inhibition dynamics. This macroscopic oscillatory network behavior is less pronounced in the low-frequency range (1–3 Hz).  相似文献   

20.
Toothed whales use a pneumatic sound generator to produce echolocation and communication sounds. Increasing hydrostatic pressure at depth influences the amplitude and duration of calls but not of echolocation clicks. Here we test the hypothesis that information transfer at depth might be facilitated by click‐based communication signals. Wild short‐finned pilot whales (27) instrumented with multisensor DTAGs produced four main types of communication signals: low‐ and medium‐frequency calls (median fundamental frequency: 1.7 and 2.9 kHz), two‐component calls (median frequency of the low and high frequency components: 2 and 9 kHz), and rasps (burst‐pulses with median interclick interval of 21 ms). Rasps can be confused with foraging buzzes, but rasps are shorter and slower, and are not associated with fast changes in body acceleration nor reduced acoustic output of buzzes, characteristic of prey capture attempts. Contrary to calls, the energy flux density of rasps was not significantly affected by depth. This, and a different information content, may explain the observed increase in the relative occurrence of rasps with respect to calls at depth, and supports the hypothesis that click‐based communication signals may facilitate communication under high hydrostatic pressure. However, calls are produced at depth also, indicating that they may carry additional information relevant for deep‐diving animals, including potential communication among whales diving at the same time in this highly social deep‐diving species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号