首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a microcosm experiment with monocultures and all possible combinations of four aquatic hyphomycete species, Articulospora tetracladia, Flagellospora curta, Geniculospora grandis and Heliscus submersus, to examine the potential effects of species richness on three functional aspects: leaf litter decomposition (leaf mass loss), fungal production (ergosterol buildup) and reproductive effort (released spores). Both species richness and identity significantly affected fungal biomass and conidial production (number and biomass of released spores), whereas only species identity had a significant effect on leaf mass loss. In mixed cultures, all measures of fungal functions were greater than expected from the weighted performances of participating species in monoculture. Mixed cultures outperformed the most active monoculture for biomass accumulation but not for leaf mass loss and conidial production. The three examined aspects of aquatic hyphomycete activity tended to increase with species richness, and a complementary effect was unequivocally demonstrated for fungal biomass. Our results also suggest that specific traits of certain species may have a greater influence on ecosystem functioning than species number.  相似文献   

2.
The contribution of fungi and bacteria to the decomposition of alder leaves was examined at two reference and two polluted sites in the Ave River (northwestern Portugal). Leaf mass loss, microbial production from incorporation rates of radiolabeled compounds into biomolecules, fungal biomass from ergosterol concentration, sporulation rates, and diversity of aquatic hyphomycetes associated with decomposing leaves were determined. The concentrations of organic nutrients and of inorganic nitrogen and phosphorus in the stream water was elevated and increased at downstream sites. Leaf decomposition rates were high (0.013 day(-1) < k < 0.042 day(-1)), and the highest value was estimated at the most downstream polluted site, where maximum values of microbial production and fungal biomass and sporulation were found. The slowest decomposition occurred at the other polluted site, where, along with the nutrient enrichment, the lowest current velocity and dissolved-oxygen concentration in water were observed. At this site, fungal production, biomass, and sporulation were depressed, suggesting that stimulation of fungal activity by increased nutrient concentrations might be offset by other factors. Although bacterial production was higher at polluted sites, fungi accounted for more than 94% of the total microbial net production. Fungal yield coefficients varied from 10.2 to 13.6%, while those of bacteria were less than 1%. The contribution of fungi to overall leaf carbon loss (29.0 to 38.8%) greatly exceeded that of bacteria (4.2 to 13.9%).  相似文献   

3.
Aquatic hyphomycetes dominate leaf decomposition in streams, and their biomass is an important component in the diet of leaf-eating invertebrates. After 2 weeks of exposure in a first-order stream, maple leaf disks had low levels of fungal biomass and species diversity. Spore production by aquatic hyphomycetes also was low. Subsets of these disks were left in the stream for another 3 weeks or incubated in defined mineral solutions with one of three levels of nitrate and phosphate. Stream disks lost mass, increased ergosterol levels and spore production, and were colonized by additional fungal species. External N and P significantly stimulated mass loss, ergosterol accumulation, and spore production of laboratory disks. On disks incubated without added N and P, ergosterol levels declined while conidium production continued, suggesting conversion of existing hyphal biomass to propagules. In all other treatments, approximately equal amounts of newly synthesized biomass were invested in hyphae and conidia. Net yield (fungal biomass per leaf mass lost) varied between 1% (in the laboratory, without added N or P) and 31% (decay in stream). In most treatments, the three aquatic hyphomycete species that dominated spore production during the first 2 weeks in the stream also produced the largest numbers of conidia in the following 3 weeks. Principal-component analysis suggested two divergent trends from the initial fungal community established after 2 weeks in the stream. One culminated in the community of the second phase of stream exposure, and the other culminated in the laboratory treatment with the highest levels of N and P. The results suggest that fungal production in streams, and, by extension, production of invertebrates and higher tropic levels, is stimulated by inorganic N and P.  相似文献   

4.
The contribution of fungi and bacteria to the decomposition of alder leaves was examined at two reference and two polluted sites in the Ave River (northwestern Portugal). Leaf mass loss, microbial production from incorporation rates of radiolabeled compounds into biomolecules, fungal biomass from ergosterol concentration, sporulation rates, and diversity of aquatic hyphomycetes associated with decomposing leaves were determined. The concentrations of organic nutrients and of inorganic nitrogen and phosphorus in the stream water was elevated and increased at downstream sites. Leaf decomposition rates were high (0.013 day−1 < k < 0.042 day−1), and the highest value was estimated at the most downstream polluted site, where maximum values of microbial production and fungal biomass and sporulation were found. The slowest decomposition occurred at the other polluted site, where, along with the nutrient enrichment, the lowest current velocity and dissolved-oxygen concentration in water were observed. At this site, fungal production, biomass, and sporulation were depressed, suggesting that stimulation of fungal activity by increased nutrient concentrations might be offset by other factors. Although bacterial production was higher at polluted sites, fungi accounted for more than 94% of the total microbial net production. Fungal yield coefficients varied from 10.2 to 13.6%, while those of bacteria were less than 1%. The contribution of fungi to overall leaf carbon loss (29.0 to 38.8%) greatly exceeded that of bacteria (4.2 to 13.9%).  相似文献   

5.
Aquatic hyphomycetes dominate leaf decomposition in streams, and their biomass is an important component in the diet of leaf-eating invertebrates. After 2 weeks of exposure in a first-order stream, maple leaf disks had low levels of fungal biomass and species diversity. Spore production by aquatic hyphomycetes also was low. Subsets of these disks were left in the stream for another 3 weeks or incubated in defined mineral solutions with one of three levels of nitrate and phosphate. Stream disks lost mass, increased ergosterol levels and spore production, and were colonized by additional fungal species. External N and P significantly stimulated mass loss, ergosterol accumulation, and spore production of laboratory disks. On disks incubated without added N and P, ergosterol levels declined while conidium production continued, suggesting conversion of existing hyphal biomass to propagules. In all other treatments, approximately equal amounts of newly synthesized biomass were invested in hyphae and conidia. Net yield (fungal biomass per leaf mass lost) varied between 1% (in the laboratory, without added N or P) and 31% (decay in stream). In most treatments, the three aquatic hyphomycete species that dominated spore production during the first 2 weeks in the stream also produced the largest numbers of conidia in the following 3 weeks. Principal-component analysis suggested two divergent trends from the initial fungal community established after 2 weeks in the stream. One culminated in the community of the second phase of stream exposure, and the other culminated in the laboratory treatment with the highest levels of N and P. The results suggest that fungal production in streams, and, by extension, production of invertebrates and higher tropic levels, is stimulated by inorganic N and P.  相似文献   

6.
Most studies of terrestrial litter decomposition in streams and rivers have used leaves from a single tree species, but leaf packs in streams in eastern North America are usually mixtures of two or more species. Litter mixtures may decay more quickly than either of the component species. If so, estimates of stream energy and nutrient budgets may be inaccurate. In northern Nova Scotia, Canada, we measured mass loss from binary mixtures (1:1 mass ratio) of leaf litter in mesh bags, using freshly fallen or air-dried litter from five species of canopy trees. We repeated the experiment eight times, in summer and fall, in two streams and a small river, over 3 years. In some trials we enumerated benthic invertebrate and fungal colonization of decaying litter. Although there were marked differences in mass loss rates among litter types, decomposition was accelerated in mixtures relative to the mean of the component species in only three of eight trials, and only in mixtures containing N-rich speckled alder leaves. Mixing yellow birch and red maple leaves inhibited decomposition. Diversity (Shannon–Weaver Index), species richness, and abundance of aquatic hyphomycete fungi, as indexed by conidial production, were never greater (and sometimes less) on litter mixtures than on the component species. Total numbers, taxonomic richness and diversity of benthic invertebrates generally, and litter-feeding species in particular, were not augmented by mixing litter types. Litter mixtures appear to dilute a preferred substrate with patches of a less preferred substrate. Our results provide only weak support for the contention that combining two litter types leads to acceleration of decomposition rates. Handling editor: K. Martens  相似文献   

7.
Decomposition of leaf litter is a microbial mediated process that helps to transfer energy and nutrients from leaves to higher trophic levels in woodland streams. Generally, aquatic hyphomycetes are viewed as the major fungal group responsible for leaf litter decomposition. In this study, traditional microscopic examination (based on identification of released conidia) and phylogenetic analysis of 18S rRNA genes from cultivated fungi were used to compare fungal community composition on decomposing leaves of two species (sugar maple and white oak) from a NE Ohio stream. No significant differences were found in sporulation rates between maple and oak leaves and both had similar species diversity. From the 18S rRNA gene sequence data, identification was achieved for 12 isolates and taxonomic affiliation of 12 of the remaining 14 isolates could be obtained. A neighbor-joining tree (with bootstrap values) was constructed to examine the taxonomic distribution of the isolates relative to sequences of known operational taxonomic units (OTUs). Surprisingly, only 2 of the isolates obtained were aquatic hyphomycetes based on phylogenetic analysis. Overall, there were no differences between the two leaf types and a higher diversity was observed via culturing and subsequent 18S rRNA gene sequencing than by conidia staining. These differences resulted from the fact that traditional microscopy provides estimates of aquatic hyphomycete diversity while the other approach revealed the presence of both aquatic hyphomycete and non-aquatic hyphomycete taxa. The presence of this broad array of taxa suggests that the role of aquatic hyphomycetes relative to other fungi be re-evaluated. Even though the functional role of these non-aquatic hyphomycetes taxa is unknown, their presence and diversity demonstrates the need to delve further into fungal community structure on decomposing leaves.  相似文献   

8.
Although fungi are known to colonize and decompose plant tissues in various environments, there is scanty information on fungal communities on wetland plants, their relation to microhabitat conditions, and their link to plant litter decomposition. We examined fungal diversity and succession on Phragmites australis leaves both attached to standing shoots and decaying in the litter layer of a brackish tidal marsh. Additionally, we followed changes in fungal biomass (ergosterol), leaf nitrogen dynamics, and litter mass loss on the sediment surface of the marsh. Thirty-five fungal taxa were recorded by direct observation of sporulation structures. Detrended correspondence analysis and cluster analysis revealed distinct communities of fungi sporulating in the three microhabitats examined (middle canopy, top canopy, and litter layer), and indicator species analysis identified a total of seven taxa characteristic of the identified subcommunities. High fungal biomass developed in decaying leaf blades attached to standing shoots, with a maximum ergosterol concentration of 548 ± 83 μg g–1 ash-free dry mass (AFDM; mean ± SD). When dead leaves were incorporated in the litter layer on the marsh surface, fungi experienced a sharp decline in biomass (to 191 ± 60 μg ergosterol g–1 AFDM) and in the number of sporulation structures. Following a lag phase, species not previously detected began to sporulate. Leaves placed in litter bags on the sediment surface lost 50% of their initial AFDM within 7 months (k = −0.0035 day–1) and only 21% of the original AFDM was left after 11 months. Fungal biomass accounted for up to 34 ± 7% of the total N in dead leaf blades on standing shoots, but to only 10 ± 4% in the litter layer. These data suggest that fungi are instrumental in N retention and leaf mass loss during leaf senescence and early aerial decay. However, during decomposition on the marsh surface, the importance of living fungal mass appears to diminish, particularly in N retention, although a significant fraction of total detrital N may remain associated with dead hyphae.  相似文献   

9.
1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.  相似文献   

10.
We performed field and laboratory experiments to evaluate the effect of solar radiation (UVR and PAR) on leaf litter decomposition, fungal biomass and sporulation rates, in the Andean Patagonia, where high UVR levels are common. Leaves of Alnus glutinosa exposed to three treatments, normal radiation (PAR + UVR), protected from UVR and protected from total radiation (SHADE) by plastic films lost 31–37% of their mass. Leaves of Nothofagus pumilio lost 61–64% of their mass under the same conditions. For both leaf species, differences in mass losses among treatments were not statistically significant. Sporulation rates were significantly lower in the SHADE treatment. Fungal biomass accounted for 6.2 to 7.1% of leaf mass, without significant differences among treatments. In the laboratory, leaf discs of A. glutinosa colonized by single species of aquatic hyphomycetes (Articulospora tetracladia, Flagellospora curta or Lunulospora curvula) and exposed to or protected from UVR did not differ in mass loss and sporulation rates. Pure cultures of two fungal species grew at the same rates when exposed to light (PAR and PAR + UVR) or to the SHADE. In summary, we found no evidences that current high levels of UV radiation affect litter decomposition mediated by aquatic hyphomycetes. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then incubated in laboratory microcosms at two levels of nutrients. Patterns of carbon flow for leaf disks colonized with the full microbial assemblage were compared with those colonized by bacteria but in which fungi were greatly reduced by placing leaf disks in colonization chambers sealed with membrane filters to exclude aquatic hyphomycete conidia but not bacterial cells. On leaves colonized by the full microbial assemblage, elevated nutrient concentrations stimulated fungi and bacteria to a similar degree. Peak fungal and bacterial biomass increased by factors of 3.9 and 4.0; cumulative production was 3.9 and 5.1 times higher in the high nutrient in comparison with the low nutrient treatment, respectively. Fungi dominated the total microbial biomass (98.4 to 99.8%) and cumulative production (97.3 and 96.5%), and the fungal yield coefficient exceeded that of bacteria by a factor of 36 and 27 in low- and high-nutrient treatments, respectively. Consequently, the dominant role of fungi in leaf decomposition did not change as a result of nutrient manipulation. Carbon budgets indicated that 8% of leaf carbon loss in the low-nutrient treatment and 17% in the high-nutrient treatment were channeled to microbial (essentially fungal) production. Nutrient enrichment had a positive effect on rate of leaf decomposition only in microcosms with full microbial assemblages. In treatments where fungal colonization was reduced, cumulative bacterial production did not change significantly at either nutrient level and leaf decomposition rate was negatively affected (high nutrients), suggesting that bacterial participation in carbon flow from decaying leaf litter is low regardless of the presence of fungi and nutrient availability. Moreover, 1.5 and 2.3 times higher yield coefficients of bacteria in the reduced fungal treatments at low and high nutrients, respectively (percentage of leaf carbon loss channeled to bacterial production), suggest that bacteria are subjected to strong competition with fungi for resources available in leaf litter.  相似文献   

12.
Ergosterol and ATP concentrations, microbial respiration and sporulation rates of aquatic hyphomycetes associated with leaves of Castanea sativa decomposing in a 5th order stream were determined periodically over a period of 102 days in order to compare ergosterol and ATP as indicators of fungal biomass. ATP and ergosterol concentrations exhibited a significant positive correlation (F = 4.459, DF = 28, P < 0.001) during the first stages of leaf breakdown (until day 39), i.e., during periods of increasing fungal biomass. No correlation was found between ATP and ergosterol concentrations during later stages of decomposition (days 39 to 102). Respiration rates increased rapidly up to 0.525 mg O2 h1 g1 AFDM during the first month and remained high until the end of the experiment. Sporulation rates peaked at day 9 (1069 conidia day1 mg1 AFDM) and decreased during later stages of decomposition. ATP‐to‐biomass conversion factors were determined for both fungi (0.59 μmol ATP g1 dry mass) and bacteria (1.30 μmol ATP g1 dry mass) collected from the stream and grown in the laboratory. Estimates of fungal biomass based on ATP concentrations were similar to those calculated from ergosterol concentrations during the first 39 days of breakdown. The results here presented suggest that ATP is a reliable method to quantify microbial biomass in streams and that the relative importance of bacteria increases at later stages of decomposition. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Summary 1. Heterotrophic microorganisms are crucial for mineralising leaf litter and rendering it more palatable to leaf‐shredding invertebrates. A substantial part of leaf litter entering running waters may be buried in the streambed and thus be exposed to the constraining conditions prevailing in the hyporheic zone. The fate of this buried organic matter and particularly the role of microbial conditioning in this habitat remain largely unexplored. 2. The aim of this study was to determine how the location of leaf litter within the streambed (i.e. at the surface or buried), as well as the leaf litter burial history, may affect the leaf‐associated aquatic hyphomycete communities and therefore leaf consumption by invertebrate detritivores. We tested the hypotheses that (i) burial of leaf litter would result in lower decomposition rates associated with changes in microbial assemblages compared with leaf litter at the surface and (ii) altered microbial conditioning of buried leaf litter would lead to decreased quality and palatability to their consumers, translating into lower growth rates of detritivores. 3. These hypotheses were tested experimentally in a second‐order stream where leaf‐associated microbial communities, as well as leaf litter decomposition rates, elemental composition and toughness, were compared across controlled treatments differing by their location within the streambed. We examined the effects of the diverse conditioning treatments on decaying leaf palatability to consumers through feeding trials on three shredder taxa including a freshwater amphipod, of which we also determined the growth rate. 4. Microbial leaf litter decomposition, fungal biomass and sporulation rates were reduced when leaf litter was buried in the hyporheic zone. While the total species richness of fungal assemblages was similar among treatments, the composition of fungal assemblages was affected by leaf litter burial in sediment. 5. Leaf litter burial markedly affected the food quality (especially P content) of leaf material, probably due to the changes in microbial conditioning. Leaf litter palatability to shredders was highest for leaves exposed at the sediment surface and tended to be negatively related to leaf litter toughness and C/P ratio. In addition, burial of leaf litter led to lower amphipod growth rates, which were positively correlated with leaf litter P content. 6. These results emphasise the importance of leaf colonisation by aquatic fungi in the hyporheic zone of headwater streams, where fungal conditioning of leaf litter appears particularly critical for nutrient and energy transfer to higher trophic levels.  相似文献   

14.
As leaves enter woodland streams, they are colonized by both fungi and bacteria. To determine the contribution of each of these microbial groups to the decomposition process, comparisons of fungal and bacterial production are needed. Recently, a new method for estimating fungal production based on rates of [(sup14)C]acetate incorporation into ergosterol was described. Bacterial production in environmental samples has been determined from rates of [(sup3)H]leucine incorporation into protein. In this study, we evaluated conditions necessary to use these methods for estimating fungal and bacterial production associated with leaves decomposing in a stream. During incubation of leaf disks with radiolabeled substrates, aeration increased rates of fungal incorporation but decreased bacterial production. Incorporation of both radiolabeled substrates by microorganisms associated with leaf litter was linear over the time periods examined (2 h for bacteria and 4 h for fungi). Incorporation of radiolabeled substrates present at different concentrations indicated that 400 nM leucine and 5 mM acetate maximized uptake for bacteria and fungi, respectively. Growth rates and rates of acetate incorporation into ergosterol followed similar patterns when fungi were grown on leaf disks in the laboratory. Three species of stream fungi exhibited similar ratios of rates of biomass increase to rates of acetate incorporation into ergosterol, with a mean of 19.3 (mu)g of biomass per nmol of acetate incorporated. Both bacterial and fungal production increased exponentially with increasing temperature. In the stream that we examined, fungal carbon production was 11 to 26 times greater than bacterial carbon production on leaves colonized for 21 days.  相似文献   

15.
Ferreira V  Gulis V  Graça MA 《Oecologia》2006,149(4):718-729
We assessed the effect of whole-stream nitrate enrichment on decomposition of three substrates differing in nutrient quality (alder and oak leaves and balsa veneers) and associated fungi and invertebrates. During the 3-month nitrate enrichment of a headwater stream in central Portugal, litter was incubated in the reference site (mean NO3-N 82 μg l−1) and four enriched sites along the nitrate gradient (214–983 μg NO3-N l−1). A similar decomposition experiment was also carried out in the same sites at ambient nutrient conditions the following year (33–104 μg NO3-N l−1). Decomposition rates and sporulation of aquatic hyphomycetes associated with litter were determined in both experiments, whereas N and P content of litter, associated fungal biomass and invertebrates were followed only during the nitrate addition experiment. Nitrate enrichment stimulated decomposition of oak leaves and balsa veneers, fungal biomass accrual on alder leaves and balsa veneers and sporulation of aquatic hyphomycetes on all substrates. Nitrate concentration in stream water showed a strong asymptotic relationship (Michaelis–Menten-type saturation model) with temperature-adjusted decomposition rates and percentage initial litter mass converted into aquatic hyphomycete conidia for all substrates. Fungal communities did not differ significantly among sites but some species showed substrate preferences. Nevertheless, certain species were sensitive to nitrogen concentration in water by increasing or decreasing their sporulation rate accordingly. N and P content of litter and abundances or richness of litter-associated invertebrates were not affected by nitrate addition. It appears that microbial nitrogen demands can be met at relatively low levels of dissolved nitrate, suggesting that even minor increases in nitrogen in streams due to, e.g., anthropogenic eutrophication may lead to significant shifts in microbial dynamics and ecosystem functioning. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

16.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hard water stream [pH 8.0] and a soft water stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 microg liter(-1)) and phosphorus (<3 microg liter(-1)). The leaves of each species decomposed faster in the hard water stream (decomposition rates, 0.010 and 0.007 day(-1) for yellow poplar and oak, respectively) than in the soft water stream (decomposition rates, 0.005 and 0.004 day(-1) for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [(14)C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hard water stream but not in the soft water stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hard water stream (5.8 mg g(-1) day(-1) on yellow poplar leaves and 3.1 mg g(-1) day(-1) on oak leaves) than in the soft water stream (1.6 mg g(-1) day(-1) on yellow poplar leaves and 0.9 mg g(-1) day(-1) on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the soft water stream (12.8% of detrital mass) than in the hard water stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the soft water stream.  相似文献   

17.
Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species.  相似文献   

18.
In forest headwater streams where the riparian canopy limits autochthonous primary production, leaf litter decomposition is a key process controlling nutrient and carbon cycling. Any alteration of the riparian vegetation may influence litter decomposition and detrital food webs. We evaluated the effect of non-native Platanus hybrida riparian plantations on leaf litter decomposition in Mediterranean streams. The experiment was conducted in six headwater streams; three lined by native riparian vegetation and three crossing P. hybrida plantations. We have characterized the processing rates of alder leaves and the assemblages of shredder macroinvertebrates and fungi. Litter decomposition was significantly faster in the P. hybrida than in the reference streams. Although the dissolved inorganic nitrogen concentration was higher in P. hybrida, no significant effect was observed in decomposition rates. Differences in decomposition rates reflected the macroinvertebrate and shredder colonization in alder litter, with higher abundance and richness in the P. hybrida streams. However, aquatic hyphomycete sporulation rate was higher in reference streams, suggesting that the variation in decomposition rates is a direct consequence of shredder abundance. Our findings support part of the substrate quality-matrix quality (SMI) hypothesis, which expects that high-quality litter will show increased decomposition rates in a low-quality litter matrix.  相似文献   

19.
Lecerf A  Dobson M  Dang CK  Chauvet E 《Oecologia》2005,146(3):432-442
Riparian vegetation is closely connected to stream food webs through input of leaf detritus as a primary energy supply, and therefore, any alteration of plant diversity may influence aquatic ecosystem functioning. We measured leaf litter breakdown rate and associated biological parameters in mesh bags in eight headwater streams bordered either with mixed deciduous forest or with beech forest. The variety of leaf litter types in mixed forest results in higher food quality for large-particle invertebrate detritivores (‘shredders’) than in beech forest, which is dominated by a single leaf species of low quality. Breakdown rate of low quality (oak) leaf litter in coarse mesh bags was lower in beech forest streams than in mixed forest streams, a consequence of lower shredder biomass. In contrast, high quality (alder) leaf litter broke down at similar rates in both stream categories as a result of similar shredder biomass in coarse mesh bags. Microbial breakdown rate of oak and alder leaves, determined in fine mesh bags, did not differ between the stream categories. We found however aquatic hyphomycete species richness on leaf litter to positively co-vary with riparian plant species richness. Fungal species richness may enhance leaf litter breakdown rate through positive effects on resource quality for shredders. A feeding experiment established a positive relationship between fungal species richness per se and leaf litter consumption rate by an amphipod shredder (Gammarus fossarum). Our results show therefore that plant species richness may indirectly govern ecosystem functioning through complex trophic interactions. Integrating microbial diversity and trophic dynamics would considerably improve the prediction of the consequences of species loss.  相似文献   

20.
We examine the relative importance of substrate quality and temperature in the establishment of aquatic hyphomycete assemblages and in their ability to decompose leaves. We used leaves of alder (Alnus glutinosa) and oak (Quercus robur) and we tested four temperatures (5°, 10°, 15° and 20 °C). Differences in decomposition rates and fungal assemblages were higher substrata than across temperatures. In both species, decomposition efficiency measured as the ratio of decay rate to fungal biomass, was greater at higher temperatures. Oak leaves were colonized by fewer aquatic hyphomycete species than was alder. Decomposition rates of oak increased with temperature but that of alder was not affected. We conclude that the substratum is a key driver of aquatic hyphomycete assemblages and can attenuate the effects of temperature differences on litter decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号