首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Analysis of frozen cores of gravel surrounding the egg pockets of chum salmon, Oncorhynchus keta, collected in the fall revealed that spawning activity by females purged about 75 % of the fine sediments from the stream bed. The egg pocket was one of four distinct vertical strata detected in the cores. There was an undisturbed layer below the egg pocket, and separate bridge and cover strata above the egg pocket, all defined by different particle size distributions. However, by spring most of the egg pockets had been infiltrated with fine sediment and the particle size distribution approached background levels. The most likely physical factors responsible for these results were: (1) intrusion of fine sediments through the cleaned surface gravel, (2) lateral subsurface migration of fine sediment into interstitial voids, (3) scour of the surface gravel and subsequent deposition of a sand rich bedload, and (4) superimposed spawning activity of other fish, causing disturbance of the cleaned surface gravel and exposing the egg pocket to intrusion of fine particles. We conclude that, while female salmon substantially affect the physical environment of their embryos, subsequent sediment transport processes and fine bedload flux tend to return this environment to pre-spawning conditions.  相似文献   

2.
We examined regional and latitudinal variation in fecundity and egg weight for five species of Pacific salmon ( Oncorhynchus ) along the Pacific coast of North America. Data were examined for 24 chum salmon, 15 pink salmon, 34 sockeye salmon, 44 chinook salmon, and 40 coho salmon populations from published sources, unpublished Canadian hatchery records, our own laboratory investigations, and other unpublished sources. Substantial regional variation in fecundity and egg weight was observed, with salmon on the Queen Charlotte Islands and Vancouver Island in British Columbia generally having lower fecundity and larger egg size than nearby mainland populations. The relative distance of freshwater migration to the spawning grounds generally had a marked effect on both fecundity and egg size, with populations spawning in the upper portions in the drainages of large rivers like the Fraser River in British Columbia having reduced fecundity and egg size compared with coastal spawning populations. Fecundity was generally higher and egg size generally lower in more northern populations of sockeye, chinook, and coho salmon compared with southern ones. We suggest that egg size tends to be lower in northern populations of some species as a result of increased fecundity due to their older ages at maturity and a limited amount of energy that can be expended on egg production.  相似文献   

3.
Excavation of stranded redds revealed differences in spawning behaviour between farmed and wild Atlantic salmon. The redd of a farmed fish contained more egg pockets (nine v . average of two) and fewer eggs per pocket (averages: 459 v . 707). No other pocket measures differed.  相似文献   

4.
Chum salmon Oncorhynchus keta from the Tugur River of Khabarovsk krai was studied. It was found that, in the river basin, chum salmon of two ecological groups reproduces: the first spawns at river sections with a pronounced underflow and the second spawns at river sections with a groundwater outlet. In the first anadromous migration, usually three maxima of the number of approaches of migrating fish are observed. The first in time maximum is represented by early (or summer) chum salmon, the second includes migrants of early and late (or autumn) form, and the third is represented by chum salmon of only late form. Forms of chum salmon from the Tugur River basin different in dates of the run and the spawning sites differ not only in the ecology of reproduction but also in biological indices. The later chum salmon is larger; its gonads at entry into the river for spawning are less mature as compared with early chum salmon. The autumn form of chum salmon reproducing at key spawning grounds is distributed more widely than the summer form. It is found along the Asian coast from Chukotka in the north to Japan and Korea in the south. Summer chum salmon occupies only part of the range of the autumn form.  相似文献   

5.
Physiological telemetry and proximate tissue analyses were used to assess energy expended by chum salmon Oncorhynchus keta on various behaviours during spawning in Kanaka Creek, British Columbia, Canada, and results were compared with published data on Fraser River sockeye salmon Oncorhynchus nerka , the only other species for which both types of measurements have been taken. Chum salmon arrived at the spawning grounds with body energy densities of 4·84 MJ kg−1 in males and 4·62 MJ kg−1 in females, lower than most sockeye salmon populations, and died with energy densities of c . 4 MJ kg−1, similar to that observed in sockeye salmon and other salmonids. Moisture levels generally increased in body tissues over the spawning life, particularly in female gonads, and lipid levels decreased. Declines in protein observed over the spawning life of other Pacific salmon Oncorhynchus sp. were less evident in Kanaka Creek chum salmon. Holding behaviour constituted the dominant component of the activity schedule and energy budget of both sexes. After holding, the most expensive behaviours were nest digging in females and aggressive displays in males. Dominant males expended the most energy on behaviours each day, as indexed by oxygen consumption (3600 mgO2 kg−1), while satellite males expended nearly as much (3504 mgO2 kg−1) but females expended considerably less (2327 mgO2 kg−1). Kanaka chum salmon engaged more frequently in energetically expensive reproductive behaviours than Stuart River sockeye salmon.  相似文献   

6.
In the Sakhalin-Kuril region hatchery culture of pink and chum salmon is of great importance compared to other regions of the Russian Far East. During the last 30 years the number of hatcheries increased two-fold, and significant advances were made in hatchery technologies. As a result, chum salmon capture in regions where hatcheries operate (southwestern and eastern Sakhalin coasts, and Iturup Island) was 9 times as high during 2006–2010 than during 1986–1990, whereas wild chum salmon harvest markedly declined. Recent dynamics in pink salmon catch appear to track trends in natural spawning in monitored index rivers, suggesting natural-origin pink salmon play a dominant role in supporting the commercial fishery. It remains uncertain as to whether hatcheries have substantially supplemented commercial catch of pink salmon in this region, and I recommend continued research (including implementing mass marking and recovery programs) before decisions are made regarding increasing pink salmon hatchery production. Location of hatcheries in spawning river basins poses problems for structuring a management system that treats hatchery and wild populations separately. Debate continues regarding the existence and importance of density-dependent processes operating in the ocean environment and the role hatcheries play in these processes. Loss of critical spawning habitat for chum salmon in the Sakhalin-Kuril region has lead to significant declines in their abundance. I conclude by recommending increases in releases of hatchery chum salmon numbers in the region to help recover depressed wild populations and provide greater commercial fishing benefits in the region.  相似文献   

7.
Since the late 20th century, the biomass of Pacific salmon Oncorhynchus spp. has increased. Hokkaido, northern Japan, is one of the main areas of chum salmon O. keta production in the North Pacific and intensive hatchery programs support the recent high abundance. However, proper management of naturally spawning populations is necessary to conserve healthy stocks of this species. In 2008, we started a program to assess the naturally spawning chum salmon populations in Hokkaido. Of the total of approximately 1,500 rivers in Hokkaido, 238 rivers with lengths of longer than 8 km (excluding those rivers used for hatchery broodstock collection) were surveyed in 2008 and 2009. The number of non-enhanced rivers found to contain naturally reproducing chum salmon was 59 (31.4% of surveyed rivers) and 50 (37.6% of surveyed rivers) rivers in 2008 and 2009, respectively. Including the rivers where hatchery broodstock were collected and rivers shorter than 8 km that contain naturally spawning chum salmon, chum salmon ascended at least 191 and 175 rivers in Hokkaido in 2008 and 2009, respectively. Repeated foot surveys indicated that the run timings of naturally spawning chum salmon may be affected by coastal commercial fisheries. This study showed that naturally spawning chum salmon remain in many rivers in Hokkaido where hatchery programs have been intensively conducted.  相似文献   

8.
Movement of nutrients across ecosystem boundaries can have important effects on food webs and population dynamics. An example from the North Pacific Rim is the connection between productive marine ecosystems and freshwaters driven by annual spawning migrations of Pacific salmon (Oncorhynchus spp). While a growing body of research has highlighted the importance of both pulsed nutrient subsidies and disturbance by spawning salmon, their effects on population densities of vertebrate consumers have rarely been tested, especially across streams spanning a wide range of natural variation in salmon densities and habitat characteristics. We studied resident freshwater prickly (Cottus asper), and coastrange sculpins (C. aleuticus) in coastal salmon spawning streams to test whether their population densities are affected by spawning densities of pink and chum salmon (O. gorbuscha and O. keta), as well as habitat characteristics. Coastrange sculpins occurred in the highest densities in streams with high densities of spawning pink and chum salmon. They also were more dense in streams with high pH, large watersheds, less area covered by pools, and lower gradients. In contrast, prickly sculpin densities were higher in streams with more large wood and pools, and less canopy cover, but their densities were not correlated with salmon. These results for coastrange sculpins provide evidence of a numerical population response by freshwater fish to increased availability of salmon subsidies in streams. These results demonstrate complex and context-dependent relationships between spawning Pacific salmon and coastal ecosystems and can inform an ecosystem-based approach to their management and conservation.  相似文献   

9.
The straying of hatchery salmon may harm wild salmon populations through a variety of ecological and genetic mechanisms. Surveys of pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon in wild salmon spawning locations in Prince William Sound (PWS), Alaska since 1997 show a wide range of hatchery straying. The analysis of thermally marked otoliths collected from carcasses indicate that 0–98% of pink salmon, 0–63% of chum salmon and 0–93% of sockeye salmon in spawning areas are hatchery fish, producing an unknown number of hatchery-wild hybrids. Most spawning locations sampled (77%) had hatchery pink salmon from three or more hatcheries, and 51% had annual escapements consisting of more than 10% hatchery pink salmon during at least one of the years surveyed. An exponential decay model of the percentage of hatchery pink salmon strays with distance from hatcheries indicated that streams throughout PWS contain more than 10% hatchery pink salmon. The prevalence of hatchery pink salmon strays in streams increased throughout the spawning season, while the prevalence of hatchery chum salmon decreased. The level of hatchery salmon strays in many areas of PWS are beyond all proposed thresholds (2–10%), which confounds wild salmon escapement goals and may harm the productivity, genetic diversity and fitness of wild salmon in this region  相似文献   

10.
The chum salmon of the Amur River (the mainland part of the Far East) and the Poronai River (Terpeniya Bay, Sakhalin Island) are historically related to one another, as the drainage basins of these rivers are the remnants of a formerly single river system, the Paleoamur, which existed when Sakhalin Island was a part of the continent. Both river populations of chum salmon consist of the early-run and late-run ecological forms (seasonal races), which are also referred to as the summer and autumn races. They are reproductively isolated from each other due to their spawning at different times and in different types of spawning grounds. To assess the direction, pattern, and degree of divergence between these chum salmon races in the both river fragments since the Paleoamur, it is necessary to compare them using two types of traits: selectively neutral DNA markers and morphological and physiological traits, variations in which may have an adaptive value. For this, we have studied chum salmon from both rivers in terms of microsatellite DNA markers, body counts and measurements, body weight, and fecundity. Both in the Amur River and in the Poronai River, the autumn race of chum salmon prevails over the summer race in body length and weight, fecundity, number of pyloric caeca, and several other meristic traits. The intra-basin differences between the races are much more pronounced in the Amur chum salmon. The inter-race differences in microsatellites are also greater in the Amur chum salmon compared to the Poronai chum salmon. Using microsatellites, three levels of differentiation have been revealed: (1) between the basins of the Amur and Poronai rivers, (2) between the races within each of the river basins, (3) and between population samples within each race of each basin. A hypothesis is proposed that the currently existing races of chum salmon in the Amur and Poronai rivers have evolved since the breakup of the Paleoamur, and the intra-basin divergence of the races started in the Amur River earlier than in the Poronai River. An analysis of our own data and the published data suggests that the adaptation of the seasonal races of chum salmon to the conditions of their spawning grounds is determined by a complex of morphological and physiological traits, including the number of pyloric caeca, which is an adaptive and highly heritable trait associated with the incubation temperature of the water.  相似文献   

11.
A relation between muscle protease activity and serum protease inhibitory activity of chum salmon during spawning migration was studied with regard to their physiological states. The autolytic activity of chum salmon muscle significantly increased, while the trypsin inhibitory activity in serum significantly decreased during spawning migration. Serum trypsin inhibitor was inactivated following treatment with androgen. It was consequently proved that androgen was trigger to the inactivation of serum protease inhibitor, resulting in high levels of muscle protease activity during spawning migration.  相似文献   

12.
Pacific salmon (Oncorhynchus spp.) play an important role as a keystone species and provider of ecosystem services in the North Pacific ecosystem. We review our studies on recent production trends, marine carrying capacity, climate effects and biological interactions between wild and hatchery origin populations of Pacific salmon in the open sea, with a particular focus on Japanese chum salmon (O. keta). Salmon catch data indicates that the abundance of Pacific salmon increased since the 1976/77 ocean regime shift. Chum and pink salmon (O. gorbuscha) maintained high abundances with a sharp increase in hatchery-released populations since the late 1980s. Since the 1990s, the biomass contribution of hatchery returns to the total catch amounts to 50% for chum salmon, more than 10% for pink salmon, and less than 10% for sockeye salmon (O. nerka). We show evidence of density-dependence of growth and survival at sea and how it might vary across spatial scales, and we provide some new information on foraging plasticity that may offer new insight into competitive interactions. The marine carrying capacity of these three species is synchronized with long-term patterns in climate change. At the present time, global warming has positively affected growth and survival of Hokkaido populations of chum salmon. In the future, however, global warming may decrease the marine carrying capacity and the area of suitable habitat for chum salmon in the North Pacific Ocean. We outline future challenges for salmon sustainable conservation management in Japan, and recommend fishery management reform to sustain the hatchery-supported salmon fishery while conserving natural spawning populations.  相似文献   

13.
Aggregate hatchery production of Pacific salmon in the Kamchatka region of the Russian Federation is very low (< 0.5% of total harvest, with five hatcheries releasing approximately 41 M juvenile salmon annually), but contributions in certain rivers can be substantial. Enhancement programs in these rivers may strongly influence fitness and production of wild salmon. In this paper we document significant divergence in demographic traits in hatchery salmon populations in the Bolshaya River and we estimate the proportion of hatchery chum salmon in the total run in the Paratunka River to demonstrate the magnitude of enhancement in this system. We observed a reduction in the expression of life history types in hatchery populations (ranging from 1 to 9 types) compared to wild populations (17 types) of sockeye salmon in the Bolshaya River. We found similar trends in Chinook salmon in the same river system. This reduced life history diversity may make these fish less resilient to changes in habitat and climate. We estimate hatchery chum salmon currently contribute 17-45% to the natural spawning population in the Paratunka River. As hatchery fish increase in numbers at natural spawning sites, this hatchery production may affect wild salmon production. It is important to investigate the risk of introgression between hatchery and wild salmon that can lead to reduction in salmon fitness in Kamchatka rivers, as well as the potential of ecological interactions that can have consequences on status of wild salmon and overall salmon production in this region.  相似文献   

14.
A harvested stock of chum salmon homing to Kurilskiy Bay, Iturup Island, consists of two genetically distinct river populations that reproduce in two rivers that drain into the bay and are characterized by limited gene flow. One of these is small and can be regarded as wild, whereas the other is much larger and, until recently, was composed of naturally reproducing components spawning in the river??s mainstem and tributaries, with almost no hatchery reproduction during the past two decades. The only human impact on reproduction of the chum salmon stock was regulation of the escapement, with officially accepted limits to avoid ??over-escapement??. Recently the hatchery began to release a large amount of chum salmon juveniles. As confirmed by data on variation in both age composition and microsatellite DNA, first-generation hatchery-origin fish that returned from the first large releases occupied spawning grounds and presumably competed directly with, and potentially displaced wild fish. The most dramatic example is a genetically distinct beach-spawning form of chum salmon that was swamped by much more numerous hatchery-origin fish of the river-spawning form. In order to restore and support naturally reproduced population components, careful estimation of the carrying capacity of natural spawning grounds is necessary with efforts to increase escapement to these habitats. We also recommend concerted efforts to restore and conserve a unique beach-spawning population of chum salmon. We further recommend development of a marking program for direct estimation of straying and evaluation of ecological and genetic impacts of hatchery fish on neighboring wild and natural populations.  相似文献   

15.
Concurrent natural and sexual selection have been inferred from laboratory and comparative studies in a number of taxa, but are rarely measured in natural populations. Because the interaction of these two general categories of selection may be complex when they occur simultaneously, empirical evidence from natural populations would help us to understand this interaction and probably give us greater insight into each separate episode as well. In male sockeye salmon, sexual selection for larger body size has been indicated in both deep and shallow water habitats. However, in shallow habitats male sockeye are generally smaller and less deep-bodied than in deep habitats, a difference that has been ascribed to natural selection. We measured concurrent natural and sexual selection in two years on breeding male sockeye salmon with respect to body size, body shape, and time of arrival to the breeding grounds. Natural selection was variable in effect and sexual selection was variable in intensity in these two years. The patterns of selection also appear to be interdependent; areas where predation on spawning adults is not intense have yielded different patterns of sexual selection than those measured here. It appears that some of the body shape differences in sockeye salmon associated with different spawning habitats, which were previously attributed to selective mortality, may be a result of different patterns of sexual selection in the different habitats. Total selection resulting from the combination of both natural and sexual selection was less intense than either natural or sexual selection in most cases. Measurement of concurrent selection episodes in nature may help us to understand whether the pattern of differential sexual selection is common, and whether observed patterns of habitat-related differentiation may be due to differences in sexual selection.  相似文献   

16.
The results of examining mtDNA variability in populations of chum salmon Oncorhynchus keta from the rivers of the basins of the seas of Japan and Okhotsk and in the chum salmon seasonal races of the Amur River are presented. A significant level of polymorphism between the majority of the populations studied was detected. The groups of chum salmon from the seas of Japan and Okhotsk displayed the most pronounced differences. Analysis of genetic variability demonstrated that periodic paleontologic and climatic changes in the past of this region were the most probable factor that caused the divergence of these populations. The advances and retreats of glaciers and the accompanying regressions and transgressions of the ocean level caused isolation of chum salmon in the refugia belonging hypothetically to the paleo-Shuifen and paleo-Amur regions. These population groups diverged presumably 350–450 thousand years ago. Differences between the seasonal races of the Amur chum salmon are insignificant, and their emergence dates back to the period of the last Wisconsinian glaciation. Probably, the main isolation factor now is the genetically determined time of spawning.  相似文献   

17.
The variability of 32 enzyme loci was studied in chum salmon populations with different types of reproduction—natural, mixed, and artificial—in some Magadan Region rivers. Among the populations studied, the values of mean heterozygosity and allele number per locus did not differ significantly. We found evidence of definite temporal stability of the populations, and also found that their genetic variability was expressed only slightly but still remained in spite of periodic egg transplantations between rivers. Statistically significant spatial genetic differentiation of the populations accounted for 0.55 to 0.76% of the total variation and the mean inter-year differentiation accounted for 0.30% of the total. Significant temporal (seasonal) genetic subdivision was revealed in chum salmon of the Tauy River. The populations of the Okhotsk Sea coast are very similar genetically to the east Sakhalin populations. The industrial chum salmon population founded and reproduced artificially in the Kulkuty River preserves the genetic similarity of the donor Yama River chum salmon. In the industrial population, we observed a tendency toward reduction of genetic variation over time. The contribution of the Yama population to the gene pool of the Ola chum salmon, (both by natural reproduction and by farming) is small in spite of many large-scale transplantations. However, the consequences of those transplantations are revealed by means of linkage disequilibrium analysis.  相似文献   

18.
The chum and pink salmon catches in Hokkaido, Japan have increased dramatically since the 1970s and the 1990s, respectively. In contrast, masu salmon catches have been steadily decreasing. Despite intensive hatchery development in Hokkaido, naturally spawning salmon populations persist based on results from a recent river survey. This paper focuses on the challenges of maintaining hatchery salmon populations while protecting natural chum, pink and masu salmon populations in Hokkaido. Two important initiatives related to meeting this ambitious goal are managing hatcheries in a way that minimizes negative interactions between natural and hatchery salmon populations, and initiating new efforts at restoring and rehabilitating degraded freshwater habitats. In addition, in order to maintain a balance of demand and supply in the domestic market through the exportation of extra salmon, Hokkaido has decided to enter full assessment to gain Marine Stewardship Council (MSC) certification of the Hokkaido chum salmon trap net fishery. This would involve a fundamental shift in fisheries management as practiced in Japan, specifically elevating the importance of managing the fishery in a way that conserves natural salmon populations. A key component of a new salmon management strategy is the establishment of a zone management framework based on the designation of stream units to spatially separate natural salmon from hatchery salmon to minimize negative effects of hatchery fish and to utilize effectively hatchery salmon for commercial fisheries. This effort is allied with similar initiatives in other Pacific Rim countries that are focusing on management reform to restore natural ecosystem function and maintain the coexistence of wild and hatchery salmon.  相似文献   

19.
Results of studies of spawning chum salmon Oncorhynchus keta (Walbaum) in Olutorsky Bay and the Apuka River—the largest river in northeast Kamchatka—inflowing Olutorsky Bay of the Bering Sea are presented. It was established that the first individuals of the chum salmon enter the river together with early sockeye salmon and chinook salmon in the first ten-day period of June, and mass-spawning run takes place in July–August. Analysis of biological characteristics of chum salmon caught in the Apuka River and Olutorsky Bay of the Bering Sea enabled us to reveal the inhomogeneity of its spawning school represented by two seasonal forms.  相似文献   

20.
Poliakova NE  Semina AV  Brykov VA 《Genetika》2006,42(10):1388-1396
The results of examining mtDNA variation in populations of chum salmon Oncorhynchus keta from the rivers of the basins of the seas of Japan and Okhotsk and in the chum salmon seasonal races of the Amur River are presented. A significant level of polymorphism between the majority of the populations studied was detected. The groups of chum salmon from the Japan and Okhotsk Seas displayed the most pronounced differences. Analysis of genetic variation demonstrated that periodic paleontologic and climatic changes in the past of this region were the most probable factor that caused the divergence of these populations. The advances and retreats of glaciers and the accompanying regressions and transgressions of the ocean level caused isolation of chum salmon in the refugia belonging hypothetically to the paleo-Suifun and paleo-Amur regions. These population groups diverged presumably 350-450 thousand years ago. Differences between the seasonal races of the Amur chum salmon are insignificant, and their emergence dates back to the period of the last Wisconsin glaciation. Probably, the main isolation factor now is the genetically determined time of spawning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号