首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regulatory properties of brain glutamate decarboxylase   总被引:13,自引:0,他引:13  
1. Glutamate decarboxylase is a focal point for controlling gamma-aminobutyric acid (GABA) synthesis in brain. Several factors that appear to be important in the regulation of GABA synthesis have been identified by relating studies of purified glutamate decarboxylase to conditions in vivo. 2. The interaction of glutamate decarboxylase with its cofactor, pyridoxal 5'-phosphate, is a regulated process and appears to be one of the major means of controlling enzyme activity. The enzyme is present in brain predominantly as apoenzyme (inactive enzyme without bound cofactor). Studies with purified enzyme indicate that the relative amounts of apo- and holoenzyme are determined by the balance in a cycle that continuously interconverts the two. 3. The cycle that interconverts apo- and holoenzyme is part of the normal catalytic mechanism of the enzyme and is strongly affected by several probable regulatory compounds including pyridoxal 5'-phosphate, ATP, inorganic phosphate, and the amino acids glutamate, GABA, and aspartate. ATP and the amino acids promote apoenzyme formation and pyridoxal 5'-phosphate and inorganic phosphate promote holoenzyme formation. 4. Numerous studies indicate that brain contains multiple molecular forms of glutamate decarboxylase. Multiple forms that differ markedly in kinetic properties including their interactions with the cofactor have been isolated and characterized. The kinetic differences among the forms suggest that they play a significant role in the regulation of GABA synthesis.  相似文献   

2.
The alternate procedures used in the tyrosine apodecarboxylase assays for pyridoxal 5'-phosphate were evaluated to determine optimal conditions. Two preparations of tyrosine apodecarboxylase from Streptococcus faecalis were used: a cell suspension and a partially purified cell-free form. The activity of the decarboxylase was measured in two different assays using [14C]tyrosine or [3H]tyrosine as substrate. The presence of serum proteins caused greater inhibition of the assay for serum pyridoxal phosphate using [14C]tyrosine as substrate than the assay with [3H]tyrosine. In contrast, addition of deproteinized serum extract did not appear to inhibit either assay. The rate of reconstitution of the apodecarboxylase in the cell suspension was at least four times slower than that of the cell-free enzyme. The rate of reconstitution of the cell-free enzyme was faster in acetate than in citrate buffer. Inorganic sulfate or phosphate, at normal plasma concentrations, did not alter either the reconstitution rate of tyrosine decarboxylase or the final activity obtained in the assays using either substrate. The tyrosine apodecarboxylase assay for pyridoxal phosphate can be optimized by using deproteinized sera or plasma and incubating the cell-free apoenzyme with the coenzyme in acetate buffer for a time sufficient to obtain maximum reconstitution.  相似文献   

3.
Pyridoxal [32P] phosphate was prepared using [gamma-32P] ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

4.
A new improved method for purification of the enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) from rat spleen is described. The catalytic subunit of cyclic AMP-dependent protein kinase in the presence of MgATP stimulated about 3-fold the activity of this partially purified enzyme activity. When [gamma-32P]ATP was included in the assay mixture, the analysis of phosphoprotein products by SDS/polyacrylamide-gel electrophoresis and autoradiography showed the incorporation of [32P]phosphate into a single protein band of about 30 kDa. Analysis of the phosphorylated amino acids indicated that the phosphate was incorporated into a serine residue. Activation of the acetylation reaction by the protein kinase was reversible. The reversal of the activation was coincident with the loss of the [32P]phosphate incorporated into the 30 kDa protein band, which suggests that the acetyltransferase is regulated by a phosphorylation-dephosphorylation mechanism dependent on cyclic AMP.  相似文献   

5.
Pyridoxal [32P] phosphate was prepared using [γ-32P]ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

6.
In order to meet a need for a cAMP assay which is not subject to interference by compounds in plant extracts, and which is suitable for use on occasions separated by many 32P half-lives, an assay based on cAMP-dependent protein kinase has been developed which does not require the use of [γ-32P]ATP. Instead of measuring the cAMP-stimulated increase in the rate of transfer of [γ-32P] phosphate from [γ-32P]ATP to protein, the rate of loss of ATP from the reaction mixture is determined. The ATP remaining after the protein kinase reaction is assayed by ATP-dependent chemiluminescence of the firefly luciferin-luciferase system. Under conditions of the protein kinase reaction in which a readily measurable decrease in ATP concentration occurs, the logarithm of the concentration of ATP decreases in proportion to the cAMP concentration, i.e., the reaction can be described by the equation: [ATP] = [ATP]0 e?[cAMP]kt. The assay based on this relationship can detect less than 1 pmol of cAMP. The levels of cAMP found with this assay after partial purification of the cAMP from rat tissue, algal cells, and the media in which the cells were grown agreed with measurements made by the cAMP binding-competition assay of Gilman, and the protein kinase stimulation assay based on transfer of [32P] phosphate from [γ-32P]ATP to protein. All of the enzymes and chemicals required for the assay of cAMP by protein kinase catalyzed loss of ATP can be stored frozen for months, making the assay suitable for occasional use.  相似文献   

7.
Sterol ester hydrolase (cholesterol esterase, E.C. 3.1.1.13) of bovine adrenal cortex has been extensively purified by ammonium sulfate fractionation, acid precipitation, hydroxylapatite chromatography, and Sephadex G-200 chromatography. During the purification sequence, the hydrolase activity was purified free of endogenous protein kinase. With this purified preparation, activation by cyclic AMP and ATP-Mg2+ did not occur unless exogenous protein kinase was included in the activating system. Using [gamma-32P]ATP, the transfer of the terminal phosphate to the enzyme protein was demonstrated by three separate experimental approaches. With pooled fractions from Sephadex G-200 chromatography, significant binding of 32P by the enzyme protein was observed only in the presence of exogenous protein kinase. Time course studies disclosed a close concurrence between the extent of activation of the purified enzyme by cyclic AMP-dependent protein kinase and the level of 32P transfer from [gamma-32P]ATP to the enzyme protein. Finally, assays carried out during Sephadex G-200 chromatography showed a correspondence in the peaks for activated sterol ester hydrolase and for 32P binding by protein. The data confirm that activation of adrenal sterol ester hydrolase by cyclic AMP and ATP-Mg2+ involves protein kinase-catalyzed phosphorylation of the enzyme protein.  相似文献   

8.
Homogenization of rat liver in Hepes (N-2-hydroxyethylpiperazine-N′-2-ethane-sulfonic acid), MOPS (2-[N-morpholino]ethanesulfonic acid), Na phosphate, Pipes (piperazine-N,N′-bis[2-ethanesulfonic acid]), TEA (triethanolamine), TES (N-tris[hydroxymethyl]-methyl-2-aminoethanesulfonic acid), Tricine (N-tris-[hydroxymethyl]methylglycine), or Tris (tris[hydroxymethyl]aminomethane), and subsequent assay for supernatant total and holo tyrosine aminotransferase activity using these buffers yields apparent enzyme concentrations which vary depending upon the buffer composition, the ionic strength, and the fold-dilution of the supernatant. A precipitous decrease in the apparent holoenzyme concentration results from a slight dilution of the supernatant with most of the buffers. Some of the dilution effects may be due to dissociation of pyridoxal phosphate from the apoenzyme or to competition between the buffer and pyridoxal phosphate for association with the enzyme. The percentage of the apparent total enzyme which exists as holoenzyme varies from 3% for supernatant prepared in Na phosphate buffer up to 94% for that prepared in Hepes. Inactivation of total enzyme activity occurs to a similar extent resulting from incubation of liver homogenates prepared with Na phosphate, Hepes, or Pipes. The residual apparent holoenzyme activity observed when assayed in the presence of Na phosphate may be due to reaction of an enzyme other than tyrosine aminotransferase. The data provide a basis for explaining the large variation in reported percentage holoenzyme and should also serve as a warning for other holoenzyme assays which use pyridoxal phosphate as a cofactor.  相似文献   

9.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

10.
At high concentrations of ATP, ATP hydrolysis and Ca2+ transport by the (Ca2+ + MG2+)-ATPase of intact sarcoplasmic reticulum vesicles exhibit a secondary activation that varies with the extent of back-inhibition by Ca2+ accumulated within the vesicles. When the internal ionized Ca2+ is clamped at low and intermediate levels by the use of Ca-precipitating anions, the apparent Km values for activation by ATP are lower than in fully back-inhibited vesicles (high internal Ca2+). In leaky vesicles unable to accumulate Ca2+, raising Ca2+ in the assay medium from 20-30 microM to 5 mM abolishes the activation of hydrolysis by high concentrations of ATP. The level of [32P]phosphoenzyme formed during ATP hydrolysis from [32P]phosphate added to the medium also varies with the extent of back-inhibition; it is highest when Ca2+ is raised to a level that saturates the internal, low-affinity Ca2+ binding sites. In intact vesicles, increasing the ATP concentration from 10 to 400 microM competitively inhibits the reaction of inorganic phosphate with the enzyme but does not change the rate of hydrolysis. In a previous report (De Meis, L., Gomez-Puyou, M.T. and Gomez-Puyou, A. (1988) Eur. J. Biochem. 171, 343-349), it has been shown that the hydrophobic molecules trifluoperazine and iron bathophenanthroline compete for the catalytic site of the Pi-reactive form of the enzyme. Here it is shown that inhibition of ATP hydrolysis by these compounds is reduced or abolished when Ca2+ binds to the low-affinity Ca2+ binding sites of the enzyme. Since inhibition by these agents is indifferent to activation of hydrolysis by high concentrations of ATP, it is suggested that the second Km for ATP and the inhibition by hydrophobic molecules involve two different Ca-free forms of the enzyme.  相似文献   

11.
Plasma amine oxidases (EC 1.4.3.6) are classified as containing the organic cofactor pyridoxal phosphate. Biochemical and bioassays on the pig plasma amine oxidase fail to reveal the presence of pyridoxal phosphate and 31P n.m.r. evidence is also inconsistent with pyridoxal phosphate in the enzyme. Resonance Raman spectral studies on phenylhydrazone derivatives of the pig and bovine plasma enzymes have been carried out and comparisons made with the corresponding derivatives of pyridoxal phosphate and pyrroloquinoline quinone (PQQ). The resonance Raman evidence indicates that the cofactor in both plasma amine oxidases is PQQ or a closely related species and not pyridoxal phosphate. The results substantiate earlier reports concerning the identity of the organic cofactor.  相似文献   

12.
Incubation of hepatocytes with [32P]orthophosphate resulted in the incorporation of 32P into material that is precipitated by reaction with antibodies to ATP citrate lyase. The amount of radioactivity precipitated was decreased when unlabeled, purified ATP citrate lyase was added to extracts of hepatocytes that had been incubated with [32P]orthophosphate. Addition of glucagon to hepatocytes that had been preincubated with [32P]orthophosphate resulted in a 56% increase in acid-stable 32P in the trichloroacetic acid-insoluble portion of immunoprecipitates. Catalytic phosphate bound to ATP citrate lyase reaction with ATP and Mg2+ is acid-labile; thus, glucagon-dependent phosphorylation is distinguished from the catalytic phosphate. When hepatocytes were incubated in the absence of [32P]orthophosphate and extracted in a medium containing [gamma-32P]ATP, no acid-stable 32P was present in immunoprecipitates. This indicates that the incorporation into ATP citrate lyase of acid-stable phosphate occurs prior to extraction of the enzyme. Preliminary studies, using a procedure that allows for measurement of enzyme activity starting 1 min after beginning the extraction of lyase from hepatocytes, have shown no difference in lyase activity when hepatocytes are treated with or without glucagon.  相似文献   

13.
Two distinct phenotypic classes of lysine requiring auxotrophs of Escherichia coli are described. Mutants of the LysA class produce little or no active diaminopimelic acid (DAP) decarboxylase and specifically require lysine for growth. Mutants of the LysB class produce a cryptic DAP decarboxylase which can be activated both in vivo and in vitro by higher than normal levels of its cofactor, pyridoxal 5'-phosphate. The LysB mutants have an alternate requirement for lysine or pyridoxine. Both LysA and LysB mutations map at 55 min, close to the thyA locus of E. coli. The association between pyridoxal phosphate and DAP decarboxylase appears to be much weaker in LysB mutants than in wild-type bacteria, and the mutant enzyme also sediments more slowly than wild-type enzyme in sucrose density gradients. The results suggest that the LysB mutations alter a specific region (or subunit) of the enzyme molecule which is needed to stabilize the binding of pyridoxal phosphate. These studies help to resolve certain contradictory observations on DAP decarboxylase reported earlier and may have relevance to pyridoxal phosphate enzymes in general. Prototrophic revertants of LysB mutants arise by second site mutations that result in increased availability of intracellular pyridoxal phosphate. These revertants appear to be derepressed for pyridoxine biosynthesis.  相似文献   

14.
1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1'-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.  相似文献   

15.
Glutamate-Dependent Active-Site Labeling of Brain Glutamate Decarboxylase   总被引:3,自引:3,他引:0  
A major regulatory feature of brain glutamate decarboxylase (GAD) is a cyclic reaction that controls the relative amounts of holoenzyme and apoenzyme [active and inactive GAD with and without bound pyridoxal 5'-phosphate (pyridoxal-P, the cofactor), respectively]. Previous studies have indicated that progression of the enzyme around the cycle should be stimulated strongly by the substrate, glutamate. To test this prediction, the effect of glutamate on the incorporation of pyridoxal-P into rat-brain GAD was studied by incubating GAD with [32P]pyridoxal-P, followed by reduction with NaBH4 to link irreversibly the cofactor to the enzyme. Adding glutamate to the reaction mixture strongly stimulated labeling of GAD, as expected. 4-Deoxypyridoxine 5'-phosphate (deoxypyridoxine-P), a close structural analogue of pyridoxal-P, was a competitive inhibitor of the activation of glutamate apodecarboxylase by pyridoxal-P (Ki = 0.27 microM) and strongly inhibited glutamate-dependent labeling of GAD. Analysis of labeled GAD by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed two labeled proteins with apparent molecular masses of 59 and 63 kDa. Both proteins could be purified by immunoaffinity chromatography on a column prepared with a monoclonal antibody to GAD, and both were labeled in a glutamate-dependent, deoxypyridoxine-P-sensitive manner, indicating that both were GAD. Three peaks of GAD activity (termed peaks I, II, and III) were separated by chromatography on phenyl-Sepharose, labeled with [32P]pyridoxal-P, purified by immunoaffinity chromatography, and analyzed by SDS-polyacrylamide gel electrophoresis. Peak I contained only the 59-kDa labeled protein. Peaks II and III contained the both the 59- and 63-kDa proteins, but in differing proportions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] of turkey erythrocytes were labelled by using either [32P]Pi or [3H]inositol. Although there was little basal release of inositol phosphates from membranes purified from labelled cells, in the presence of guanosine 5'-[gamma-thio]triphosphate (GTP[S]) the rate of accumulation of inositol bis-, tris- and tetrakis-phosphate (InsP2, InsP3 and InsP4) was increased 20-50-fold. The enhanced rate of accumulation of 3H-labelled inositol phosphates was linear for up to 20 min; owing to decreases in 32P specific radioactivity of phosphoinositides during incubation of membranes with unlabelled ATP, the accumulation of 32P-labelled inositol phosphates was linear for only 5 min. In the absence of ATP and a nucleotide-regenerating system, no InsP4 was formed, and the overall inositol phosphate response to GTP[S] was decreased. Analyses of phosphoinositides during incubation with ATP indicated that interconversions of PtdIns to PtdIns4P and PtdIns4P to PtdIns(4,5)P2 occurred to maintain PtdIns(4,5)P2 concentrations; GTP[S]-induced inositol phosphate formation was accompanied by a corresponding decrease in 32P- and 3H-labelled PtdIns, PtdIns4P and PtdIns(4,5)P2. In the absence of ATP, only GTP[S]-induced decreases in PtdIns(4,5)P2 occurred. Since inositol monophosphate was not formed under any condition, PtdIns is not a substrate for the phospholipase C. The production of InsP2 was decreased markedly, but not blocked, under conditions where Ins(1,4,5)P3 5-phosphomonoesterase activity in the preparation was inhibited. Thus the predominant substrate of the GTP[S]-activated phospholipase C of turkey erythrocyte membranes is PtdIns(4,5)P2. Ins(1,4,5)P3 was the major product of this reaction; only a small amount of Ins(1:2-cyclic, 4,5)P3 was released. The effects of ATP on inositol phosphate formation apparently involve the contributions of two phenomena. First, the P2-receptor agonist 2-methylthioadenosine triphosphate (2MeSATP) greatly increased inositol phosphate formation and decreased [3H]PtdIns4P and [3H]PtdIns(4,5)P2 in the presence of a low (0.1 microM) concentration of GTP[S]. ATP over the concentration range 0-100 microM produced effects in the presence of 0.1 microM-GTP[S] essentially identical with those observed with 2MeSATP, suggesting that the effects of low concentrations of ATP are also explained by a stimulation of P2-receptors. Higher concentrations of ATP also increase inositol phosphate formation, apparently by supporting the synthesis of substrate phospholipids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Nucleoplasmic RNA polymerase II (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) from calfthymus is phosphorylated by homologous cyclic AMP-independent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37). Polyacrylamide gel electrophoresis of the 32P-labeled RNA polymerase II under non-denaturing conditions revealed that both forms of the enzyme were phosphorylated. Polyacrylamide gel electrophoresis of the 32P-labeled RNA polymerase II under denaturing conditions showed that the 25 000 dalton subunit was the phosphate acceptor subunit. Partial acid hydrolysis of the 32P-labeled RNA polymerase II followed by ion-exchange chromatography revealed serine and threonine as the [32P]phosphate acceptor amino acids. Phosphorylation of the RNA polymerase II was accompanied by a stimulation of enzymatic activity and was dependent upon the presence of ATP.  相似文献   

18.
Diaminopimelate decarboxylase has been characterized in extracts of Bacillus subtilis and resolved from aspartokinases I and II. Under certain conditions, the enzyme is specifically inhibited by physiological concentrations of L-lysine, but less specificity and altered kinetics of inhibition are observed if lower ionic strengths are employed in the assay procedure. Diaminopimelate decarboxylase can be desensitized to lysine inhibition by either lowering the pH or diluting the enzyme in Tris buffer in the absence of pyridoxal phosphate. Evidence is presented to incidate that, under proper conditions, lysine inhibition involves an interaction of the amino acid with the enzyme rather than competition for available pyridoxal phosphate in the assay. Lysine, by affecting the level of meso-diaminopimelate, may thus regulate its biosynthesis through sequential feedback inhibition. Analysis of the diaminopimelate decarboxylase of 15 revertants of mutants that had originally lacked diaminopimelate decarboxylase activity indicates that as little as 5% of the specific activity of enzyme observed in the wild-type strain is sufficient to permit normal growth rates. In the growing cell, diaminopimelate decarboxylase may therefore exist largely in an inhibited state.  相似文献   

19.
Phosphonoacetaldehyde (Pald) is formed in a variety of biosynthetic pathways leading to natural phosphonates and is an intermediate in the degradation pathway of the natural product 2-aminoethylphosphonate. To facilitate the investigation of the enzymes catalyzing these pathways, a method for the synthesis of radiolabeled Pald was developed. The enzyme pyruvate phosphate dikinase was used to prepare phosphoenolpyruvate (PEP) from pyruvate, adenosine triphosphate (ATP), and orthophosphate. Then PEP was converted to phosphonopyruvate (Ppyr) with PEP mutase and then to Pald with Ppyr decarboxylase. By using [beta-32P]ATP or [2-14C]pyruvate as precursor, [32P]Pald or [1-14C]Pald was obtained, respectively. The utilization of the synthetic, radiolabeled Pald as a probe of enzyme mechanism was demonstrated with the enzyme phosphonoacetaldehyde hydrolase (trivial name phosphonatase). The single turnover time course for the formation and consumption of radiolabeled covalent enzyme species evidenced a kinetically competent covalent intermediate.  相似文献   

20.
An ATP x Mg-dependent protein phosphatase (FC) was purified to near homogeneity from rabbit muscle. The enzyme was completely devoid of any spontaneous activity but could be activated by a protein activator (FA) in the presence of ATP and Mg ions. The inactive phosphatase migrated as a single protein band on sodium dodecyl sulfate-gel electrophoresis, and in discontinuous gel electrophoresis, where the potential phosphatase activity was located in the main protein band. The molecular weight determined by sodium dodecyl sulfate electrophoresis or by sucrose density centrifugation was found to be 70,000. FC migrated on gel filtration as a 140,000 molecular weight species. The activation by FA was not paralleled by an incorporation of [32P]-phosphate into the ATP x Mg-dependent phosphatase, and from the kinetics of activation a protein-protein interaction with ATP x Mg as a necessary factor, can be inferred as the mechanism of activation. After activation by FA and ATP X Mg, the purified enzyme had a specific activity of 10,000 units/mg of protein, and a Km for rabbit muscle phosphorylase a of approximately 1.0 mg/ml. The activated enzyme did not release [32P]phosphate from 32[-labeled rabbit muscle synthase b, prepared from glucagon-treated dogs. It did, however, remove all the 32P label from phosphorylase b kinase, autophosphorylated to the level of 2.0 mol/mol of 1.3 X 10(6) molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号