首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Nishida T  Maeda A  Kubota S  Takigawa M 《Biorheology》2008,45(3-4):289-299
Mechanical stress plays an important role in the cartilage metabolism. The aim of this study is to determine the influence of mechanical load magnitude and frequency on cartilage metabolism in terms of the expression of hypertrophic chondrocyte-specific gene product 24/connective tissue growth factor/CCN family 2 (Hcs24/CTGF/CCN2), as an essential mediator of extracellular matrix (ECM) production. When a human chondrocytic cell line, HCS-2/8 was exposed to uni-axial cyclic mechanical force (6% elongation, 10 times/min) only for 30 min, the expression level of Hcs24/CTGF/CCN2 (CCN2) increased, and c-Jun N-terminal protein kinase (JNK) was activated. These findings suggest that stretch-induced CCN2 may be mediated by the JNK pathway. When HCS-2/8 cells were subjected to cyclic tension force at 15 kPa, 30 cycles/min, which has been reported to be a degradation force for HCS-2/8 cells, the expressions of CCN2 and aggrecan were inhibited, and such expressions remained unchanged in rabbit hyaline costal cartilage cells. However, these expressions increased in rabbit meniscus tissue cells. These findings suggest that the sensitivity of mechanical stretch may be different depending on the type of cells. Furthermore, CCN2 was co-localized with aggrecan in this meniscus tissue region exposed to mechanical stress in vivo. These findings suggest that CCN2 induced by mechanical stress may therefore play some role in meniscus growth and regeneration.  相似文献   

4.
Wound healing and tissue regeneration are usually initiated by coagulation followed by fibrous tissue formation. In the present study, we discovered an abundance of connective tissue growth factor (CTGF/CCN2) in human platelets, which was released along with the coagulation process. The CTGF/CCN2 content in platelets was 10-fold higher than that in arterial tissue. Furthermore, the CTGF/CCN2 content in a single platelet was computed to be more than 20-fold higher than that of any other growth factor reported. Considering that CTGF/CCN2 promotes angiogenesis, cartilage regeneration, fibrosis and platelet adhesion, it may be now regarded as one of the major functional components of platelets.  相似文献   

5.
6.
Connective tissue growth factor (CTGF/CCN2) is a cysteine-rich matricellular secreted protein that regulates diverse cell functions including adhesion, migration, proliferation, differentiation, survival, senescence and apoptosis. In the pancreas, CTGF/CCN2 regulates critical functions including β cell replication during embryogenesis, stimulation of fibrogenic pathways in pancreatic stellate cells during pancreatitis, and regulation of the epithelial and stromal components in pancreatic ductal adenocarcinoma. This article reviews the evidence establishing CTGF/CCN2 as an important player in pancreatic physiology and pathology, highlighting the specific cell types that are involved in each process and the importance of CTGF/CCN2 as a component of autocrine or paracrine signaling within or between these various cells. Translational applications, including the potential for CTGF/CCN2-based therapies in diabetes, fibrosis, or cancer, are discussed.  相似文献   

7.
CCN2/connective tissue growth factor (CCN2/CTGF) is a critical signaling modulator of mesenchymal tissue development. This study investigated the localization and expression of CCN2/CTGF as a factor supporting angiogenesis and chondrogenesis during development of secondary ossification centers in the mouse tibial epiphysis. Formation of the secondary ossification center was initiated by cartilage canal formation and blood vessel invasion at 7 days of age, and onset of ossification was observed at 14 days. In situ hybridization showed that CCN2/CTGF mRNA was distinctively expressed in the region of the cartilage canal and capsule-attached marginal tissues at 7 days of age, and distinct expression was also observed in proliferating chondrocytes around the marrow space at 14 days of age. Immunostaining showed that CCN2/CTGF was distributed broadly around the expressed cells located in the central region of the epiphysis, where the chondrocytes become hypertrophic and the cartilage canal enters into the hypertrophic mass. Furthermore, an overlapping distribution of metalloproteinase (MMP)9 and CCN2/CTGF was found in the secondary ossification center. These findings suggest that the CCN2/CTGF is involved in establishing epiphyseal vascularization and remodeling, which eventually determines the secondary ossification center in the developing epiphysial cartilage.  相似文献   

8.

Background

CCN2/CTGF is known to be involved in tooth germ development and periodontal tissue remodeling, as well as in mesenchymal tissue development and regeneration. In this present study, we investigated the roles of CCN2/CTGF in the proliferation and differentiation of periodontal ligament cells (murine periodontal ligament-derived cell line: MPL) in vitro.

Results

In cell cultures of MPL, the mRNA expression of the CCN2/CTGF gene was stronger in sparse cultures than in confluent ones and was significantly enhanced by TGF-β. The addition of recombinant CCN2/CTGF (rCCN2) to MPL cultures stimulated DNA synthesis and cell growth in a dose-dependent manner. Moreover, rCCN2 addition also enhanced the mRNA expression of alkaline phosphatase (ALPase), type I collagen, and periostin, the latter of which is considered to be a specific marker of the periosteum and periodontium; whereas it showed little effect on the mRNA expression of typical osteoblastic markers, e.g., osteopontin and osteocalcin. Finally, rCCN2/CTGF also stimulated ALPase activity and collagen synthesis.

Conclusion

These results taken together suggest important roles of CCN2/CTGF in the development and regeneration of periodontal tissue including the periodontal ligament.  相似文献   

9.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes of different tissues. Connective tissue growth factor (CTGF) seems to be involved in the fibrotic response. Several muscular dystrophies are characterized by a progressive weakness and wasting of the musculature, and by extensive fibrosis. However, the exact role of CTGF in skeletal muscle is unknown. Here we show that myoblasts and myotubes are able to synthesize CTGF in response to transforming growth factor type-beta (TGF-beta) and lysophosphatidic acid (LPA). CTGF induced several ECM constituents such as fibronectin, collagen type I and alpha4, 5, 6, and beta1 integrin subunits in myoblasts and myotubes. CTGF had an important inhibitory effect on muscle differentiation evaluated by the decrease in the nuclear translocation of the early muscle regulatory factor myogenin and myosin. Remarkable, CTGF treatment of myoblasts induced their dedifferentiation, characterized by down regulating MyoD and desmin, two markers of committed myoblasts, together with a strong reorganization of cytoskeletal filaments. These results provide novel evidence for the underlying mechanisms and participation of skeletal muscle cells in the synthesis and role of CTGF inducing fibrosis, inhibiting myogenesis and dedifferentiating myoblasts.  相似文献   

10.
Fibrotic disorders are the end point of many chronic diseases in different tissues, where an accumulation of the extracellular matrix occurs, mainly because of the action of the connective tissue growth factor (CTGF/CCN2). Little is known about how this growth factor activity is regulated. We found that decorin null myoblasts are more sensitive to CTGF than wild type myoblasts, as evaluated by the accumulation of fibronectin or collagen III. Decorin added exogenously negatively regulated CTGF pro-fibrotic activity and the induction of actin stress fibers. Using co-immunoprecipitation and in vitro interaction assays, decorin and CTGF were shown to interact in a saturable manner with a K(d) of 4.4 nM. This interaction requires the core protein of decorin. Experiments using the deletion mutant decorin indicated that the leucine-rich repeats (LRR) 10-12 are important for the interaction with CTGF and the negative regulation of the cytokine activity, moreover, a peptide derived from the LRR12 was able to inhibit CTGF-decorin complex formation and CTGF activity. Finally, we showed that CTGF specifically induced the synthesis of decorin, suggesting a mechanism of autoregulation. These results suggest that decorin interacts with CTGF and regulates its biological activity.  相似文献   

11.
In recent months, four different systems have been reported in the literature in which CCN2 transgenes were individually expressed in podocytes, hepatocytes, cardiomyocytes or respiratory epithelial cells to achieve overexpression in, respectively, the kidney, liver, heart, or lung. These transgenic systems have provided valuable information about the contribution of CCN2 to fibrosis in vivo and have begun to reveal the complexities of the underlying mechanisms involved. On the one hand, studies of these animals have revealed that CCN2 overexpression does not necessarily lead directly to fibrotic pathology but may cause severe non-fibrotic tissue damage due to its other effects on cell function (e.g. heart). On the other hand, overexpression of CCN2 in concert with signaling pathways associated with development (e.g. lung) or fibrosing injuries (e.g. kidney, liver) can lead to the initiation or exacerbation of fibrosis. The significance of these studies is discussed in the context of the requirement for interactions between CCN2 and co-stimulatory factors in the microenvironment for the manifestation of CCN2-dependent fibrosis.  相似文献   

12.
Regulation of connective tissue growth factor (CCN2/CTGF) in gingival fibroblasts is unique and may provide therapeutic opportunities to treat oral fibrotic diseases. RhoA was previously implicated in mediating the expression of CCN2/CTGF. We now present evidence that Rho family GTPases Rac1 and Cdc42 are the principal mediators of the transforming growth factor-beta1 (TGFbeta1)-stimulated expression of CCN2/CTGF in primary human gingival fibroblasts. TGFbeta1 does not stimulate RhoA activation in gingival fibroblasts, and the overexpression of dominant-negative RhoA does not reduce CCN2/CTGF expression in response to TGFbeta1. In contrast, the overexpression of dominant-negative forms of Cdc42 or Rac1 results in a dramatic reduction of CCN2/CTGF protein levels. Lovastatin and a geranylgeranyltransferase inhibitor reduce the TGFbeta1-stimulated levels of CCN2/CTGF protein by approximately 75 and 100%, respectively. We previously demonstrated that JNK1 phosphorylation by TGFbeta1 is also critical for TGFbeta1-induced CCN2/CTGF expression, and forskolin partially reduces levels of phosphorylated JNK1. Inhibition of geranylgeranyltransferase has no effect on levels of JNK phosphorylation in response to TGFbeta1 suggesting Rho-GTPases act independently of JNK1. The combination of lovastatin and forskolin results in a greater inhibitory effect than each agent alone and reduces CCN2/CTGF mRNA and protein expression by greater than 90%. This novel combination has additive inhibitory effects on the TGFbeta1-stimulated expression of CCN2/CTGF in human gingival fibroblasts through the simultaneous disruption of Rho- and JNK1-mediated pathways, respectively. This combination of available therapeutic compounds may therefore be useful in designing treatment strategies for oral fibrotic conditions in which gingival CCN2/CTGF is elevated.  相似文献   

13.
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.  相似文献   

14.
15.
Connective tissue growth factor (CTGF, CCN2) is a secreted protein with major roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. It is a member of the CCN family of immediate-early gene products which are characterised by four discrete protein modules in which reside growth factor binding domains, functional motifs for integrin recognition, heparin and proteoglycan binding, and dimerization motifs. A primary function of CTGF is to modulate and coordinate signaling responses involving cell surface proteoglycans, key components of the extracellular matrix, and growth factors. Integration of these molecular cues regulates growth factor and receptor interactions, cell motility and mesenchymal cell activation and differentiation in tissue remodelling. Abnormal amplification of CTGF dependent signals results in a failure to terminate tissue repair, leading pathological scarring in conditions such as fibrosis and cancer.  相似文献   

16.
CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor β (TGFβ) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes.  相似文献   

17.
Connective tissue growth factor (CTGF/CCN2) is a cysteine-rich, extracellular matrix (ECM) protein that acts as an anabolic growth factor to regulate osteoblast differentiation and function. Recent studies have identified CTGF as a downstream effector of transforming growth factor-beta1 (TGF-beta1) for certain functions in specific cell types. In this study, we examined the role of CTGF as a downstream mediator of TGF-beta1-induced ECM production and cell growth in osteoblasts. Using primary cultures, we demonstrated that TGF-beta1 is a potent inducer of CTGF expression in osteoblasts, and that this induction occurred at all stages of osteoblast differentiation from the proliferative through mineralization stages. TGF-beta1 treatment of osteoblasts increased the expression and synthesis of the ECM components, collagen and fibronectin. When CTGF-specific siRNA was used to prevent TGF-beta1 induction of CTGF expression, it also inhibited collagen and fibronectin production, thereby demonstrating the requirement of CTGF for their up-regulation. To examine the effects of TGF-beta1 on osteoblast cell growth, cultures were treated with TGF-beta1 during the proliferative stage. Cell number was significantly reduced and the cells exhibited a decrease in G1 cyclin expression, consistent with TGF-beta1-induced cell-cycle arrest. Cultures transfected with CTGF siRNA prior to TGF-beta1 treatment showed an even greater reduction in cell number, suggesting that TGF-beta1-induced growth arrest is independent of CTGF in osteoblasts. Collectively, these data demonstrate for the first time that CTGF is an essential downstream mediator for TGF-beta1-induced ECM production in osteoblasts, but these two growth factors function independently regarding their opposing effects on osteoblast proliferation.  相似文献   

18.
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)‐β and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF‐β‐induced expression of CTGF in fibroblasts by an interleukin (IL)‐1 α‐dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL‐1α and β. Human dermal fibroblasts and NIH 3T3 cells were treated with IL‐1α or β in presence or absence of TGF‐β1. IL‐1 suppressed basal and TGF‐β‐induced CTGF mRNA and protein expression. IL‐1α and β inhibited TGF‐β‐stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3‐binding CAGA elements. Furthermore, IL‐1α and β inhibited TGF‐β‐stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF‐β activated kinase1 (TAK1) is necessary for IL‐1 inhibition of TGF‐β‐stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226–1233, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
Two established human tumor cell lines, epidermoid carcinoma line A431 and glioblastoma line SF268, were studied to compare the interaction of each with epidermal growth factor (EGF). SF268 cells bound [125I] EGF with 35-40 fold higher affinity than did the A431 cells. The EGF binding sites of both lines were photoaffinity labeled using 2,4-NAPS-[125I] EGF, a photoreactive derivative of EGF. Extracts of photolysed cells analyzed by SDS-PAGE showed a difference between the two cell lines in the high molecular weight component corresponding to the EGF receptor. EGF in a dose range from 0.3-200 nM had no effect on thymidine incorporation by SF268 cells, whereas thymidine incorporation by A431 cells was markedly inhibited by EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号