首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
M W Rixon  E A Harris  R E Gelinas 《Biochemistry》1990,29(18):4393-4400
Regulation of the human fetal (gamma) globin gene and a series of mutant gamma-globin genes was studied after retroviral transfer into erythroid cells with fetal or adult patterns of endogenous globin gene expression. Steady-state RNA from a virally transferred A gamma-globin gene with a normal promoter increased after induction of erythroid maturation of murine erythroleukemia cells and comprised from 2% to 23% of the mouse beta maj-globin RNA level. RNA expression from the virally transferred A gamma-globin gene comprised 23% of the endogenous G gamma- + A gamma-globin expression in K 562 cells after treatment with hemin. Expression from a virally transferred gamma- or beta-globin gene exceeded endogenous gamma- or beta-globin expression by a factor of 6 or more in the human erythroleukemia line KMOE, in which the endogenous globin genes are weakly inducible. In these experiments, no difference in expression was observed between the gene with the normal promoter and an A gamma-globin gene with a point mutation in its promoter (-196 C-to-T) that has been associated with hereditary persistence of fetal hemoglobin (HPFH). To test for cis-acting determinants located within the introns of the gamma-globin gene, expression was measured from a set of gamma-globin genes configured with either intron alone or with neither intron. In contrast to an intronless beta-globin gene, which is not expressed in MEL cells, the intronless gamma-globin gene was expressed in MEL cells at 24% of the level of an intron-containing gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
G Kollias  N Wrighton  J Hurst  F Grosveld 《Cell》1986,46(1):89-94
We have introduced the human fetal gamma- and adult beta-globin genes into the germ line of mice. Analysis of the resulting transgenic mice shows that the human gamma-globin gene is expressed like an embryonic mouse globin gene; the human beta-globin gene is expressed (as previously shown) like an adult mouse globin gene. These results imply that the regulatory signals for tissue- and developmental stage-specific expression of the globin genes have been conserved between man and mouse but that the timing of the signals has changed. Because the two genes are expressed differently, we introduced a hybrid gamma beta-globin gene construct. The combination of the regulatory sequences resulted in the expression of the hybrid gene at all stages in all the murine erythroid tissues.  相似文献   

7.
8.
The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.  相似文献   

9.
10.
To examine the function of murine beta-globin locus region (LCR) 5' hypersensitive site 3 (HS3) in its native chromosomal context, we deleted this site from the mouse germ line by using homologous recombination techniques. Previous experiments with human 5' HS3 in transgenic models suggested that this site independently contains at least 50% of total LCR activity and that it interacts preferentially with the human gamma-globin genes in embryonic erythroid cells. However, in this study, we demonstrate that deletion of murine 5' HS3 reduces expression of the linked embryonic epsilon y- and beta H 1-globin genes only minimally in yolk sac-derived erythroid cells and reduces output of the linked adult beta (beta major plus beta minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-neo cassette was left within the HS3 region of the LCR, a much more severe phenotype was observed at all developmental stages, suggesting that PGK-neo interferes with LCR activity when it is retained within the LCR. Collectively, these results suggest that murine 5' HS3 is not required for globin gene switching; importantly, however, it is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult erythrocytes.  相似文献   

11.
12.
The duck beta-globin gene cluster contains a single enhancer element   总被引:1,自引:0,他引:1  
An erythroid-specific enhancer was previously identified in the 3'-flanking region of the beta adult gene in chicken and duck, by transfection into AEV transformed chicken erythroblasts. Here we show that the duck enhancer is equally active in erythroid human K562 cells, presenting an embryonic/fetal program of globin gene expression. Furthermore, no other enhancer was found within the 20 kb of DNA including four beta-like globin genes as well as a 1.5 kb upstream and a 3 kb downstream sequence.  相似文献   

13.
The CCAAT box is one of the conserved motifs found in globin promoters. It binds the CP1 protein. We noticed that the CCAAT-box region of embryonic/fetal, but not adult, globin promoters also contains one or two direct repeats of a short motif analogous to DR-1 binding sites for non-steroid nuclear hormone receptors. We show that a complex previously named NF-E3 binds to these repeats. In transgenic mice, destruction of the CCAAT motif within the human epsilon-globin promoter leads to substantial reduction in epsilon expression in embryonic erythroid cells, indicating that CP1 activates epsilon expression; in contrast, destruction of the DR-1 elements yields striking epsilon expression in definitive erythropoiesis, indicating that the NF-E3 complex acts as a developmental repressor of the epsilon gene. We also show that NF-E3 is immunologically related to COUP-TF orphan nuclear receptors. One of these, COUP-TF II, is expressed in embryonic/fetal erythroid cell lines, murine yolk sac, intra-embryonic splanchnopleura and fetal liver. In addition, the structure and abundance of NF-E3/COUP-TF complexes vary during fetal liver development. These results elucidate the structure as well as the role of NF-E3 in globin gene expression and provide evidence that nuclear hormone receptors are involved in the control of globin gene switching.  相似文献   

14.
Genomic clones which link the goat preadult (beta C) and adult (beta A) beta-globin genes have been isolated. These overlapping clones contain a previously unidentified embryonic like globin gene (epsilon III) and establish the following linkage map of eight genes in the goat beta-globin locus: epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A. This linkage map and the nucleotide sequence of the eight genes document a relatively recent duplication of a four-gene set: epsilon-epsilon-psi beta-beta. This duplication produced two genes (beta C and beta A) which are now expressed differentially during development. An embryonic like globin gene located downstream from beta A has also been isolated. The embryonic nature of this gene as well as the adult beta-like sequence of the goat fetal globin gene (gamma) suggest that a duplication of the four-gene set also produced the globin gene now expressed during fetal development.  相似文献   

15.
16.
We have ligated two cosmids through an oligonucleotide linker to produce a single fragment spanning 70 kb of the human alpha-globin cluster, in which the alpha-like globin genes (zeta 2, alpha 2 and alpha 1), their regulatory element (HS-40) and erythroid-specific DNase I hypersensitive sites accurately retain their normal genomic organization. The zeta (embryonic) and alpha (embryonic, fetal and adult) globin genes were expressed in all 17 transgenic embryos. Similarly, all fetal and adult mice from seven transgenic lines that contained one or more copies of the fragment, produced up to 66% of the level of endogenous mouse alpha-globin mRNA. However, as for smaller constructs containing these elements, human alpha-globin expression was not copy number dependent and decreased by 1.5-9.0 fold during development. These findings suggest that either it is not possible to obtain full regulation of human alpha-globin expression in transgenic mice or, more likely, that additional alpha-globin regulatory elements lie beyond the 70 kb segment of DNA analysed.  相似文献   

17.
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.  相似文献   

18.
Human fetal erythroid x murine erythroleukemia cell hybrids undergo human fetal (gamma) to adult (beta) globin gene switching in vitro under the control of a mechanism located on human chromosome 11. We investigated whether this mechanism acts in cis or in trans by preparing hybrid cells containing marked fragments of the gamma and beta genes known to switch in transgenic mice. In these cells the chromosomally introduced human globin locus undergoes the fetal to adult globin gene switch. In contrast, the marked globin gene fragments were expressed at all stages of hybrid development. These results suggest that either the mechanism of switching acts in cis or that sequences present in the chromosomal globin locus but missing from the transfected globin gene fragments mediate its action.  相似文献   

19.
20.
Histone modifications play an important role in eukaryotic gene regulation. However, the dynamic alteration of histone modification during development is poorly understood. In addition, the relationship between histone modification and globin gene switching remains unclear. Here, we assessed the dynamic pattern of histone modification (H3 acetylation, H4 acetylation, H3 K4 methylation, and H3 K79 methylation) along the murine alpha-globin locus, as well as along the human alpha-globin locus in transgenic mice, during globin gene switching in vivo. During the switching, histone modification at embryonic zeta-gene and fetal/adult alpha-genes displayed different developmental patterns. The level of histone modification at zeta-gene was developmentally regulated, in accordance with the level of zeta-gene expression, whereas the alpha-genes kept high level of histone modification at both developmental stages, regardless of their expression levels. Histone deacetylase inhibition selectively increased acetylation at the inactive zeta-gene in fetal livers, although it did not reactivate the gene expression. More importantly, an obvious increasing of histone modification level at major regulatory elements and fetal/adult alpha-genes was observed during the switching, suggesting that a conserved, extended chromatin opening within the locus occurs during globin gene switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号