首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reproductive systems of crabs reveal characters of considerable importance for the understanding of brachyuran phylogeny and evolution. The Dorippoidea show several plesiomorphic characters within Eubrachyura and similarities to podotreme crabs. Hence, they are often considered as an early diverging lineage, sometimes even as the sister group to all remaining eubrachyurans. Due to their role as prime candidates for putative plesiomorphic characters of the reproductive system of the Eubrachyura, we compared the morphology of the vaginae, seminal receptacles, and ovaries of three dorippid species using histological methods, micro‐computed tomography, and 3‐D reconstructions. Despite the putative phylogenetic position of dorippids, the female reproductive system shows features that are regarded as derived characters in eubrachyurans, including a concave vagina and a ventral‐type seminal receptacle. In contrast to other eubrachyurans, the oviduct does not enter the seminal receptacle directly but through specific cuticular valves. The female reproductive systems of Dorippe sinica and Dorippe quadridens are remarkable in further aspects. The seminal receptacles of both species are completely cuticle‐lined and have accessory sperm storage structures, the bursae. Our findings on the morphology of the female reproductive system of dorippids with its unique combination of basal, derived, and new characters challenges the prevailing hypothesis on the evolution of sperm storage organs in Eubrachyura.  相似文献   

2.
3.
We have found evidence of FMRFamide-like and cGnRH-I-like immunoreactivity in the central nervous system (CNS) and in the reproductive ducts of both female and male cephalopod Octopus vulgaris. Cell bodies and fibers were immunolocalized in the fusiform ganglion from which the nerves that reach the female and male reproductive ducts arise. FMRFamide-like and cGnRH-I-like immunoreactive nerve endings were present in the oviduct, and in the oviducal gland of the female and in the seminal vesicle of the male. The GnRH-like peptide from the reproductive ducts has been partially characterized by HPLC. The retention time of the Octopus vulgaris GnRH-like peptide was similar to the retention time of cGnRH-I. Based on these observations we suggest that FMRFamide-like and a novel GnRH-like peptide are involved in the control of reproductive ducts of Octopus vulgaris. One possibility is that the peptides affect gamete transport. Another possibility is that they regulate secretory products such as mucus and mucilaginous substances from the oviducal gland and the seminal vesicle. Our data provide further evidence to support the hypothesis of the existence of a central and peripheral peptidergic control of reproduction of Octopus vulgaris.  相似文献   

4.
The ultrastructure of the genital tracts in amphigonic females of Aphidoidea is described for the first time, using Euceraphis betulae Koch (Aphididae: Calaphidinae) as a representative. The female reproductive apparatus consists of two ovaries, each one with three/four meroistic telotrophic ovarioles; two sac‐like accessory glands lie laterally to a sac‐like seminal receptacle, opening into the dorso‐medial part of the common oviduct by means of a spermathecal duct. A marked secretory activity takes place in the epithelial cells of all the investigated tracts as shown by ultrastructural observation of many organelles involved in this process. No evident golgian area was observed in the cytoplasm of these cells. Extensive smooth endoplasmic reticulum, whose probable role is here discussed, was observed in epithelial cells of the wall of the accessory gland. Spermathecal duct and seminal receptacle had peculiar features that could be related to different secretory activities carried out by these two parts of the spermatheca.  相似文献   

5.
The effects of male-derived extracts on female receptivity were investigated in Callosobruchus maculatus (Coleoptera: Bruchidae). Injection of aqueous extracts of the male reproductive tract into the abdomen of females reduced receptivity. Aqueous extracts of male reproductive tracts were divided to three molecular weight (MW) fractions by ultrafiltration: Fractions: (I) MW<3 kDa, (II) 3-14 kDa, and (III)>14 kDa. Fraction II reduced female receptivity from 3h after injection, and Fraction III reduced female receptivity from 2 days after injection. On the other hand, no effect on receptivity was found for Fraction I. Furthermore, male reproductive tract organs were divided into accessory gland, testis, and seminal vesicle including the ejaculatory duct. Aqueous extracts of the seminal vesicle reduced receptivity of females immediately following injection, while aqueous extracts of the accessory gland reduced receptivity at the second day. The results suggest that the components of Fraction II existed in the seminal vesicle, and those of Fraction III in the accessory gland. The results of the present and the previous studies in Callosobruchus chinensis, a species closely related to C. maculatus, were compared and are discussed from the viewpoint of the significance of ejaculation in the two species.  相似文献   

6.
Our aim was to describe the reproductive system of males and the formation of sperm packages in the seminal receptacle (SR) of recently mated females of the arrow crab Stenorhynchus seticornis. The male reproductive system was analyzed, and was described using light microscopy and histological and histochemical methods. The first pair of gonopods was described by means of scanning electron microscopy. Additionally, the dehiscence of spermatophores was tested using samples obtained from the vas deferens of males and from the seminal receptacle of recently mated females. Testes were tubular type, and each vas deferens consisted of three regions: the anterior vas deferens (AVD), including a proximal portion that was filled with free spermatozoa and a distal portion contained developing spermatophores; the median vas deferens (MVD) that contained completely formed spermatophores; and the posterior vas deferens (PVD), which contained only granular secretions. The accessory gland, which was filled with secretions, was located in the transition region between the MVD and the PVD. The spermatophores from the MVD were of different sizes, and none of them showed dehiscence in seawater, whereas those spermatophores in contact with the seminal receptacle were immediately broken. The ultrastructure of the gonopods revealed the presence of denticles at the distal portion, which contribute to the mechanical rupture of the spermatophore wall during the transfer of sperm. The contents of the PVD and accessory gland of males are transferred together with the spermatophores, and are responsible for the secretions observed among the sperm packets in the SR of the female. We suggest that these secretions formed the layers found in the SR of recently mated females, and may play a role in sperm competition in arrow crabs.  相似文献   

7.
The effects of male-derived extracts on female receptivity to remating were investigated in Callosobruchus chinensis (Coleoptera: Bruchidae). Injection of aqueous extracts of male reproductive tracts into the abdomen of females reduced receptivity. When aqueous extracts of male reproductive tracts were divided to three molecular weight (MW) fractions by ultrafiltration: <3, 3-14, and >14 kDa, the filtrate containing MW substances <3 kDa reduced female receptivity 3h and 1 day after injection, whereas the fraction containing MW substances >14 kDa inhibited receptivity 2 and 4 days after injection. Finally, male reproductive tract organs were divided into accessory gland, seminal vesicle, and testis. Aqueous extracts of testis reduced receptivity of females on the second day and at 3h, and aqueous extracts of accessory gland reduced receptivity of females on the second day after injection. On the other hand, aqueous extracts of seminal vesicle did not reduce female receptivity. The results indicate that more than one mechanism may be involved in producing the effects of male-derived substances on female receptivity; low MW male-derived substances, which possibly exist in testis, cause short-term inhibition, while high MW substances, which possibly exist in the accessory gland, inhibit female mating later than low MW substances in C. chinensis.  相似文献   

8.
Successful reproduction is critical to pass genes to the next generation. Seminal proteins contribute to important reproductive processes that lead to fertilization in species ranging from insects to mammals. In Drosophila, the male's accessory gland is a source of seminal fluid proteins that affect the reproductive output of males and females by altering female post-mating behavior and physiology. Protein classes found in the seminal fluid of Drosophila are similar to those of other organisms, including mammals. By using RNA interference (RNAi) to knock down levels of individual accessory gland proteins (Acps), we investigated the role of 25 Acps in mediating three post-mating female responses: egg production, receptivity to remating and storage of sperm. We detected roles for five Acps in these post-mating responses. CG33943 is required for full stimulation of egg production on the first day after mating. Four other Acps (CG1652, CG1656, CG17575, and CG9997) appear to modulate the long-term response, which is the maintenance of post-mating behavior and physiological changes. The long-term post-mating response requires presence of sperm in storage and, until now, had been known to require only a single Acp. Here, we discovered several novel Acps together are required which together are required for sustained egg production, reduction in receptivity to remating of the mated female and for promotion of stored sperm release from the seminal receptacle. Our results also show that members of conserved protein classes found in seminal plasma from insects to mammals are essential for important reproductive processes.  相似文献   

9.
Although the fruit fly, Drosophila melanogaster, has emerged as a model system for human disease, its potential as a model for mammalian reproductive biology has not been fully exploited. Here we describe how Drosophila can be used to study the interactions between sperm and the female reproductive tract. Like many insects, Drosophila has two types of sperm storage organs, the spermatheca and seminal receptacle, whose ducts arise from the uterine wall. The spermatheca duct ends in a capsule-like structure surrounded by a layer of gland cells. In contrast, the seminal receptacle is a slender, blind-ended tubule. Recent studies suggest that the spermatheca is specialized for long-term storage, as well as sperm maturation, whereas the receptacle functions in short-term sperm storage. Here we discuss recent molecular and morphological analyses that highlight possible themes of gamete interaction with the female reproductive tract and draw comparison of sperm storage organ design in Drosophila and other animals, particularly mammals. Furthermore, we discuss how the study of multiple sperm storage organ types in Drosophila may help us identify factors essential for sperm viability and, moreover, factors that promote long-term sperm survivorship.  相似文献   

10.
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.  相似文献   

11.
泥螺生殖系统的组织学   总被引:6,自引:2,他引:4  
泥螺为雌雄同体。生殖系统包括交媾器和生殖器本部。交媾器包括刺激器、阴茎和摄护腺;生殖器本部主要包括两性腺、缠卵腺和蛋白腺。刺激器和阴茎都具有非常发达的肌肉组织,腔壁游离面具纤毛。阴茎腔壁为单层柱状细胞;摄护腺被膜为一层薄的肌纤维,里面具有许多分泌细胞;缠卵腺被膜为单层扁平上皮,下层为环肌,腺体组织由分泌小管构成。蛋白腺主要由皮质层和导管层组成,皮质层内充满了分泌细胞,导管层由许多分泌小管构成,管壁为柱状腺细胞。  相似文献   

12.
昆虫雄性附腺蛋白是精液蛋白的主要来源,对雌雄虫生殖过程具有重要生理功能,按功能可分为精包结构蛋白和功能蛋白两类。精包结构蛋白参与精包的形成;功能蛋白在交配过程中随精子一起转移到雌虫体内,导致雌虫行为和生理的深刻变化,如降低雌虫再交配率、提高产卵量、促进精子转移、储存和竞争等。随着对昆虫雄性附腺功能蛋白研究的深入,特别对果蝇附腺功能蛋白的详细研究,从分子水平上阐述蛋白质序列与功能的关系,明确其作用机制,可为进一步阐明昆虫生殖和进化机制等提供新依据。  相似文献   

13.
钱静  沈和定  管菊 《动物学杂志》2015,50(4):600-606
雌雄同体贝类精子的储存和利用规律一直是国内外贝类生物学研究的难点之一,本文利用活体解剖、显微观察、组织切片和扫描电镜技术,综合研究了平疣桑椹石磺(Platevindex mortoni)的生殖系统及精子储存场所。结果显示,其生殖系统包括生殖器本部、雌性生殖部分和雄性生殖部分。生殖器本部由两性腺、两性输送管、蛋白腺、黏液腺、支囊组成;雌性生殖部分包括输卵管、受精囊、阴道,位于身体中后方体腔内;雄性生殖部分包括输精管、刺激器、阴茎、阴茎鞘和阴茎牵引肌,位于身体前端右侧体腔内;其阴茎有阴茎鞘,阴茎表面布满倒刺。平疣桑椹石磺阴茎为直线状,无雄性附属腺。未交配的性成熟个体支囊内充满细长精子,受精囊内无精子;而交配后充当雌性个体的支囊内均为细长的自体精子,受精囊内有大量活力较强的粗短精子,其支囊为自体精子的存储场所,而受精囊为异体精子的存储场所。其精子储运情况为:两性腺内精子成熟后暂存于支囊,交配时通过输精管运输至阴茎,由阴茎输送精子至对方的阴道,异体精子进入受精囊内存储待用。  相似文献   

14.
The components of the female reproductive system of Diphyllobothrium latum, including ovary, ovicapt, oviduct, vitelline ducts, vitelline reservoir, vagina, seminal receptacle, ootype with unicellular Mehlis's gland, ootype-uterine duct and uterus were observed with the electron microscope. The epithelium of the female reproductive system ducts consists of a nucleate syncytial layer. Structural differences in apical surface of the ducts, the number of nuclei and organoids in syncytial layer as well as the number of underlaid muscles were revealed. The regional differentiations of the uterus wall were registered. The middle and distal region of uterus was covered with microtriches. The filamentous microtriches were observed in apical surface of vagina. The epithelium of seminal receptacle and distal region of uterus were underlaided by the powerful muscle layers. The fertilization canal was revealed. It was shown that the formation of egg shells implemented by the deposit of vitelline globules in their surface in the ootype-uterine duct. Structural and functional differences of different parts of female apparatus in various groups of cestodes are conditioned by species biology.  相似文献   

15.
In this article, the morphology and function of the female reproductive organs of Ebalia tumefacta were investigated using histological methods. While the vagina conforms to the concave type, the study reveals a new orientation of seminal receptacle compartments. The seminal receptacle consists of two chambers, which are oriented in anterior‐posterior direction. This is in contrast to the dorso‐ventral orientation of seminal receptacle chambers in all other known brachyuran crabs. The anterior chamber is lined by cuticle, whereas the posterior chamber is covered with a holocrine glandular epithelium. The oviduct connection is located ventrally, close to the opening of the vagina. The oviduct orifice is characterized by a transition of the epithelium lining of the oviduct to the seminal receptacle holocrine glandular epithelium. Special features are muscle fibers, which are attached to the oviduct orifice and to the sternal cuticle as well. The muscle fibers can be found exactly at that point where the oviduct opens into the seminal receptacle and are secondly attached to the sternum beneath. This musculature is newly described for Eubrachyuran crabs. This musculature can be interpreted as an important feature in the fertilization and egg‐laying process in relation to supporting and controling the inflow of eggs into the seminal receptacle lumen. These new discoveries were compared to the known pattern of an Eubrachyuran seminal receptacle. J. Morphol. 276:517–525, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The fruit fly Drosophila melanogaster is an excellent model organism for studying insect reproductive biology. Although the gene expression profiles of both male and female reproductive organs have been studied in detail, their proteomic profiles and functional characteristics largely remained to be clarified. In this study, we conducted proteome mapping of the male internal reproductive organs using 2‐DE. We identified a total of 440 protein components from gels of the male reproductive organs (testis, seminal vesicle, accessory gland, ejaculatory duct, and ejaculatory bulb). A number of proteins associated with odorant/pheromone‐binding, lipid metabolism, proteolysis, and antioxidation were expressed tissue specifically in the male reproductive system. Based on our proteomic data set, we constructed reference proteome maps of the reproductive organs, which will provide valuable information toward a comprehensive understanding of Drosophila reproduction.  相似文献   

17.
Phaeobacter gallaeciensis strain ANG1 represents the dominant member of the bacterial consortium within the reproductive accessory nidamental gland (ANG) of the squid Euprymna scolopes. We present a 4.59-Mb assembly of its genome, which may provide clues as to how it benefits its host.  相似文献   

18.
The ground beetle Leptocarabus procerulus (Chaudoir) possesses seminal substances that have a physical function to form mating plugs and a physiological function to induce female refractory behaviour, which act together to hinder female remating. Little is known about the physiological properties of the substances inducing female refractory behaviour, especially with respect to their secretory organ, dose‐dependency, molecular characteristics and the effect of female maturity. By injecting male‐derived substances into females, substances that induce female refractory behaviour are shown to be produced in the male accessory gland but not in the testis. Injection of extracts from the accessory gland increases the female refractory period at moderate doses but not at lower or higher doses. By contrast, injection of extracts from the testis reduces the female refractory period at high doses. The lack of an effect of accessory gland substances at higher doses could be the result of an anomalous effect of unnaturally large doses of seminal products by direct injection, the toxicity of seminal substances that deter female responses, or counteraction by injected substances that promote female receptivity. The accessory gland substances lose their activity when heated, although the testis substances do not. Females without mature eggs tend to reject mating entirely, although variation in the number of mature eggs (one or more) is not associated with the female refractory period, indicating the limited effect of female reproductive maturity. These findings may help to clarify the physiological basis of the evolution of the elaborated male mating behaviour in L. procerulus.  相似文献   

19.
Abstract Insect seminal fluid commonly comprises a complex cocktail of proteins and other biochemical components that migrate away from the female reproductive tract to sites elsewhere in the female body and elicit changes in female reproductive behaviour. The transfer of male seminal fluid molecules to reproductive and somatic tissues of the female Queensland fruit fly (‘Q‐fly’) Bactrocera tryoni is examined and some putative target sites identified. Male Q‐flies are fed a diet containing radiolabelled (35S) amino acids, which are incorporated into male accessory gland products. Radioactivity diminishes within the accessory glands and increases in all assessed parts of the female body during copulation, indicating the transfer of these products into the female soma via the reproductive tract. There are significant changes in the absolute and proportional radioactivity profiles among female tissues over the next 22 h, with substantial reductions in the thorax and increases in the head. This is consistent with accumulation of behaviour‐modifying male products at binding sites in the female head. Parallels can be drawn between the data in the present study and seminal fluid distribution profiles and receptor binding documented in other insects.  相似文献   

20.
Because of the poor knowledge of the morphology of the female reproductive organs of most brachyuran crabs, this study investigated two Atlantic representatives of the family Leucosiidae, Ilia nucleus (Linnaeus, 1758) and Persephona mediterranea (Herbst, 1794), using histological methods and magnetic resonance imaging (MRI). While the vagina conforms to the concave type, the arrangement of the two chambers of the seminal receptacle differs strongly from that of other eubrachyuran sperm storage organs. Both chambers are oriented laterally within the crab's body. This is in contrast to the dorso-ventral orientation described in most other known brachyuran crabs. The lateral chamber is covered by cuticle, whereas the medial chamber is covered by a holocrine glandular epithelium. The oviduct connection is located ventrally, posterior to the vagina. The oviduct orifice is characterized by a transition from the epithelium lining the oviduct to the seminal receptacle's holocrine glandular epithelium. Moreover, muscle fibres are attached to the oviduct orifice and to the sternal cuticle. This musculature can be interpreted as an important feature in the fertilization and egg-laying process by supporting and controlling the inflow of eggs into the seminal receptacle lumen. The results of this study are compared to the morphology of the seminal receptacle of another leucosiid crab, Ebalia tumefacta (Montagu, 1808), and to those of other known eubrachyuran crabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号