首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Compared to (+)-pseudococaine, (?)-cocaine was 20 times more potent in inhibiting uptake of 3H-norepinephrine (3HNE) by cortical synaptosomes and 66 times more potent with respect to 3H-dopamine (3HDA) uptake by striatal synaptosomes. Although the tropacocaine isomers were equipotent as inhibitors of 3HNE uptake in the cortex, tropacocaine was 3.9 times more potent as an inhibitor of 3HDa uptake in the striatum than pseudotropococaine. A major known cocaine metabolite, benzoylecgonine failed to inhibit the accumulation of 3HNE and 3HDA by synaptosomes from the cortex and striatum, respectively. The implications of these findings in relation to the motor stimulation seen with (?)-cocaine, (+)-pseudococaine and benzoylecgonine in rats are discussed.  相似文献   

2.
Dopamine transporters of bovine and rat striata were identified by their specific [3H]cocaine binding and cocaine-sensitive [3H]dopamine ([3H]DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA; however, it increased its affinity for cocaine without changing the number of binding sites. This suggests that the DA transporter is a glycoprotein and that Con A action on it produces conformational changes

Inorganic and organic mercury reagents inhibited both [3H]DA uptake and [3H]cocaine binding, though they were all more potent inhibitors of the former, n- Ethylmaleimide inhibited [3H]DA uptake totally but [3H]cocaine binding only partially. Also, n-pyrene maleimide had differential effects on uptake and binding, inhibiting uptake and potentiating binding. [3H]DA uptake was not affected by mercaptoethanol up to 100 mM, whereas [3H]cocaine binding was inhibited by concentrations above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol (< 1 mM). The effects of all these sulfhydryl reagents suggest that the DA transporter has one or more thiol group(s) important for both binding and uptake activities. The Ellman reagent and dithiopyridine were effective inhibitors of uptake and binding only at fairly high concentration (>10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation  相似文献   

3.
A high affinity (KD 35 nM) binding site for [3H]cocaine is detected in rat brain Striatum present at 2–3 pmol/mg protein of synaptic membranes. This binding is displaced by cocaine analogues with the same rank order as their inhibition of [3H]dopamine ([3H]DA) uptake into striatal synaptosomes (r = 0.99), paralleling the order of their central stimulant activity. The potent DA uptake inhibitors nomifensine, mazindol, and benztropine are more potent inhibitors of this high affinity [3H]cocaine binding than desipramine and imipramine. Cathinone and amphetamine, which are more potent central stimulants than cocaine, displace the high affinity [3H] cocaine binding stereos-pecifically, but with lower potency (IC50 ~ 1μM) than does cocaine. It is suggested that the DA transporter in Striatum is the putative “cocaine receptor.

Binding of [3H] cocaine, measured in 10 mM Na2HPO4-0.32 M sucrose, pH 7.4 buffer, is inhibited by physiologic concentrations of Na+ and K+ and by biogenic amines. DA and Na+ reduce the affinity of the putative “cocaine receptor” for [3H]cocaine without changing the Bmax, suggesting that inhibition may be competitive. However, TRIS reduces [3H]cocaine binding non-competitively while Na+ potentiates it in TRIS buffer. Binding of [3H]mazindol is inhibited competitively by cocaine. In phosphate-sucrose buffer, cocaine and mazindol are equally potent in inhibiting [3H]mazindol binding, but in TRIS-NaCl buffer cocaine has 10 times lower potency. It is suggested that the cocaine receptor in the striatum may be an allosteric protein with mazindol and cocaine binding to overlapping sites, while Na+ and DA are allosteric modulators, which stabilize a lower affinity state for cocaine.  相似文献   

4.
Initial velocity of uptake of dopamine (DA) has been measured in the presence of 1M cocaine as a function of both [DA] and [Na]. Although DA uptake is overwhelmingly dependent on sodium, it appears that a small amount of DA uptake takes place in the absence of sodium. This contrasts with a previous study of the sodium dependence of uptake without cocaine (referred to below as control), in which uptake was found to be 100% sodium dependent. The data were fitted to several rapid equilibrium models and the minimal best fit model identified. The interaction of transporter (C), DA (S), and Na+ (Na) in this present model is identical to the reaction scheme found previously to fit control data (no cocaine). Whereas the control model required translocation only as CNa2S, in the presence of cocaine (I), two additional translocated species are required to fit the data (CS and CNaS). Another previous study of the interaction of carrier and cocaine at a constant [Na]0 predicted that cocaine interacts with a transporter site other than the DA binding site and that uptake takes place as CS and CSI. The present results are consistent with the assumption that the CS and CNaS forms of the present model are actually CSI and CNaSI, since they are required to fit a model of the sodium dependence in the presence of cocaine, but are not required in the absence of cocaine.  相似文献   

5.
The naturally occurring enantiomer of cocaine, (–)-cocaine, has been previously labeled with 11C on the N-methyl group and used in conjunction with positron emission tomography to show that cocaine is rapidly taken up in the striata of human and baboon brain. In the present study, the behaviorally inactive (+)-cocaine was similarly labeled, with a view to its use for measuring the nonspecific binding of cocaine. No brain uptake was seen, although transport of cocaine into the brain is not expected to be stereoselective. The explanation for the lack of uptake was determined to be very rapid metabolism of (+)-cocaine in the blood. By 30s after administration of labeled (+)-cocaine, it was undetectable in plasma. In vitro studies demonstrated that (+)-cocaine is 50% debenzoylated to (+)-ecgonine methyl ester within 5 s of exposure to baboon plasma but not to washed erythrocytes. The hydrolysis of (–)-cocaine is at least 1,000 times slower. Serum butyrylcholinesterase (EC 3.1.1.8) appears to be responsible for this hydrolysis, as evidenced by its inhibition by physostigmine and catalysis by commercially available pseudocholinesterase from horse and human blood.  相似文献   

6.
《Life sciences》1993,53(17):PL267-PL272
The cocaine receptor on the dopamine transporter is a logical target binding site for the design and synthesis of novel agents for evaluation as possible cocaine antagonists. Although there is no widely accepted and validated assay for detecting a cocaine antagonist, one commonly accepted strategy is to compare the IC50 value of a test agent for inhibition of [3H]dopamine uptake and its IC50 value for inhibition of the binding of a transporter ligand such as [125I]RTI-55. The goal of such a comparison is to guide the synthesis of agents which have high “uptake-to-binding ratios”, i.e. agents which are much more potent in the binding assay than they are in the uptake assay. In the present study we tested the hypothesis that ratios different from unity can result from the fact that the two assays are conducted under markedly different conditions. The results showed that conducting the uptake and binding assays under identical conditions reduced the GBR12935 uptake-to-binding ratio of 6.20 (under standard assay conditions) to 0.36. These data indicate that uptake-to-binding ratios must be interpreted with caution, and emphasizes the need for simpler and less expensive methods than cocaine self-administration paradigms to screen compounds as modulators of cocaine reinforcement.  相似文献   

7.
Abstract: In rat striatal membranes, NaCl induced a twofold increase in the maximal number of cocaine binding sites but did not alter the affinity of these sites for cocaine. This effect was concentration-dependent, specific to sodium ions, and occurred in membranes prepared from corpus striatum but not from other brain regions. Lesions with 6-hydroxydopamine but not with kainic acid eliminated the sodium-induced increase in binding and produced a decrease in the Bmax of binding measured in the presence of NaCl. The capacity of a series of drugs to interfere with Na+–dependent cocaine binding correlated well with their capacity to inhibit [3H]dopamine uptake into rat striatal synaptosomes. The present results suggest that Na+–dependent cocaine binding sites are localized presynaptically on dopaminergic nerve terminals in corpus striatum, and may be related to dopamine uptake sites.  相似文献   

8.
The nerve terminals in the striata of rat brain were labeled in vitro with [3H]dopamine via the uptake mechanism for catecholamines. Subsequently, the striata were incubated with cocaine, nomifensine, or mazindol, inhibitors of catecholamine uptake. The tissues were rinsed in fresh medium and then stimulated with 20 mM potassium to induce release of [3H]dopamine. Under these conditions, each drug decreased the potassium-stimulated release of radioactivity by 40–50% compared to control tissues which had not been exposed to the drugs.  相似文献   

9.
Abstract: The potent reinforcing effects of methamphetamine and cocaine are thought to be mediated by their interactions with CNS dopamine neurons. Both stimulants share the ability to block dopamine uptake potently, and methamphetamine can release cytoplasmic dopamine as well. There is also abundant evidence demonstrating the neurotoxic effects of methamphetamine. There are, however, limited studies that attempt to discern the neurotoxic mechanisms of these agents. The purpose of the present study was to characterize and compare the chronic in vitro effects of methamphetamine, cocaine, and the dopamine uptake blocker, mazindol, on cultured fetal mesencephalic dopamine neurons. Our studies examined biochemical mechanisms to evaluate the contribution of reuptake blockade versus release of dopamine. Using a dispersed cell preparation of fetal mesencephalon, cultures were treated for 5 days with the three uptake blockers. Dopamine function was assessed by measuring high-affinity [3H]dopamine uptake and by examining cultures for the presence of tyrosine hydroxylase-immunopositive neurons. Nonspecific neurotoxicity was assessed by staining for neuron-specific enolase and measuring lactate dehydrogenase activity. The results indicate that repeated administration of high concentrations of methamphetamine (10?4 and 10?3M) caused a generalized neurotoxicity whereas the effects of 10?5M methamphetamine appeared to be specific to dopamine cells. Likewise, treatment of the cultures with mazindol (10?6M) resulted in reduced dopamine uptake while not significantly affecting neuron-specific enolase or tyrosine hydroxylase immunostaining. On the other hand, repeated exposure to cocaine (10?5 and 10?4M) did not alter dopaminergic function in these cultures. The different mechanisms of action of these stimulants may explain the differences in neurotoxic potency of these compounds. The results demonstrate that a tissue culture model of fetal mesencephalic dopamine neurons provides a useful tool for the study of dopamine uptake systems and neuronal function.  相似文献   

10.
Tolerance to the neurochemical and psychoactive effects of cocaine after repeated use is a hallmark of cocaine addiction in humans. However, comprehensive studies on tolerance to the behavioral, psychoactive, and neurochemical effects of cocaine following contingent administration in rodents are lacking. We outlined the consequences of extended access cocaine self‐administration as it related to tolerance to the psychomotor activating, dopamine (DA) elevating, and DA transporter (DAT) inhibiting effects of cocaine. Cocaine self‐administration (1.5 mg/kg/inj; 40 inj; 5 days), which resulted in escalation of first hour intake, caused reductions in evoked DA release and reduced maximal rates of uptake through the DAT as measured by slice voltammetry in the nucleus accumbens core. Furthermore, we report reductions in cocaine‐induced uptake inhibition and a corresponding increase in the dose of cocaine required for 50% inhibition of DA uptake (Ki) at the DAT. Cocaine tolerance at the DAT translated to reductions in cocaine‐induced DA overflow as measured by microdialysis. In addition, cocaine‐induced elevations in locomotor activity and stereotypy were reduced, while rearing behavior was enhanced in animals with a history of cocaine self‐administration. Here, we demonstrate both neurochemical and behavioral cocaine tolerance in an extended‐access rodent model of cocaine abuse, which allows for a better understanding of the neurochemical and psychomotor tolerance that develops to cocaine in human addicts.

  相似文献   


11.
The effect of somatostatin (SRIF) on norepinephrine (NE) release from the brain tissue was determined on the superfused rat cerebral cortex slices preloaded with 3HNE. SRIF (0.38 μM–1.53 μM) was found to stimulate dose-dependently tritium (3H) overflow evoked electrically by 30%—116% although SRIF did not affect on the spontaneous 3H overflow. SRIF at the concentrations which exhibited the stimulatory effect inhibited scarecely the uptake of 3HNE by cortex slices, while the reference drug, cocaine (50 μM, 10 μM) markedly depressed the uptake. The stimulatory effect of SRIF was not reduced by phentolamine (3.14 μM), α-adrenoceptor blocker, which increased the evoked 3H overflow from the slices itself. These results suggest that SRIF does not produce its stimulatory effect by inhibiting the NE reuptake mechanisms or by interacting with the presynaptic α-adrenoceptors. Elevating of Ca2+ concentrations from 0.75 mM to 2.25 mM in the superfusion fluid reduced the stimulatory effect of SRIF. It is possible that SRIF stimulates NE release by facilitating the availability of Ca2+ for the release mechanisms.  相似文献   

12.
We studied the characteristics of [3H]cocaine binding to membranes prepared from whole guinea pig brain. Cocaine binding was specific and saturable. A one-site binding model fit the data adequately: the Kd value of [3H]cocaine was 44 nM with a Bmax value of 280 fmol/mg protein. The rank order of potency for the [3H]cocaine binding site was paroxetine > clomipramine > (–)-cocaine > fluoxetine > mazindol > desipramine > GBR12909 > phencyclidine > benztropine > GBR12935 > (+)-cocaine. The IC50 values of these drugs for inhibition of [3H]cocaine binding were highly correlated with their IC50 values for inhibition of [3H]5-HT uptake into synaptosomes prepared from whole guinea pig brain. High affinity 5-HT uptake inhibitors produced dose-dependent wash-resistant (pseudoirreversible) inhibition of [3H]cocaine binding. The wash-resistant inhibition produced by paroxetine was due to an increase in the Kd of [3H]cocaine binding sites, and was accompanied by an increase in the dissociation rate, consistent with an allosteric mechanism. These studies suggest that, using membranes prepared from whole guinea pig brain, [3H]cocaine labels a binding site associated with serotonin transporter and that paroxetine and cocaine bind to different sites on the serotonin transporter.Abbreviations GBR12909 1-(2-{bis(4-fluorophenyl)methoxy}ethyl)-4-{3-phenylpropyl}piperazine - TCP 1-{1-(2-thienyl)cyclohexyl}piperidine - BTCP N-{1-(2-benzo(b)thiophenyl)cyclohexyl}piperidine - PCP 1-(1-phenylcyclohexyl)piperidine - GBR12935 (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine) - CMI clomipramine  相似文献   

13.
[3H]Imipramine and [3H]cocaine were concentrated at membranes of liposomes prepared from phosphatidylcholine, cholesterol, and dicetylphosphate. This binding has an apparent dissociation constant in the micromolar range and a density close to 2 pmol/g of phosphatidylcholine. The potencies of various drugs in inhibiting the binding ot liposomes correlated only weakly with those in inhibiting the high-affinity binding of [3H]imipramine and [3H]cocaine to brain membranes. However, there was a highly significant correlation between the potencies of drugs in inhibiting binding to liposomes and their lipophilic character, indicating the involvement of hydrophobic bonding. Although the amounts of phosphatidylcholine and cholesterol in brain preparations in assays for high-affinity binding to brain membranes were in the same range as those used in our assays with liposomes, the inhibition of the high-affinity binding to brain membranes was only weakly dependent upon the lipophilicity of the inhibiting drug. These results indicate that lipophilicity is but one of the factors in the complex binding interactions between lipophilic substances and integral brain membranes. In addition, the results are in agreement with the suggestion that phosphatidylcholine and cholesterol are not the primary sites of high-affinity binding [3H]imipramine and [3H]cocaine to brain membranes, although it cannot be ruled out that these lipids have different properties in natural biological membranes and in artificial liposome membranes.  相似文献   

14.
Abstract: The psychostimulant drug of abuse, cocaine (benzoylecgonine methyl ester), is rapidly metabolized by cleavage of its two ester groups, to give benzoylecgonine (BE) and ecgonine methyl ester, and by N-demethylation, to give N-norcocaine (NC). The recent use of [N-methyl-11CH3]cocaine to image brain cocaine binding sites with positron emission tomography (PET) raises the question of whether PET images partially reflect the distribution and kinetics of labeled cocaine metabolites. We prepared [O-metty/-11CH3]cocaine by methylation of the sodium salt of BE with [11C]CH3l, and showed that PET baboon brain scans, as well as regional brain kinetics and plasma time-activity curves corrected for the presence of labeled metabolites, are nearly identical to those seen with [N-methyl-11CH3]cocaine. This strongly suggests that 11C metabolites do not significantly affect PET images, because the metabolite pattern is different for the two labeled forms of cocaine. In particular, nearly half the 11C in blood plasma at 30 min was [11C]CO2 when [N-methy/-11CH3]cocaine was administered, whereas [11C]CO2 was not formed from [O-methy/-11CH3]cocaine. Only a trace of [11C]NC was detected in plasma after [O-methyl-11CH3]cocaine administration. Nearly identical brain PET data were also obtained when 4′-[N-methy/-11CH3]fluorococaine and 4′-[18F]fluoro-cocaine (prepared by nucleophilic aromatic substitution from [18F]fluoride-and 4′-nitrococaine) were compared with [N-methy/-11CH3]cocaine. In vitro assays with rat brain membranes showed that cocaine and 4′-fluoroco-caine were equipotent at the dopamine reuptake site, but that 4′-fluorococaine was about 100 times more potent at the 5-hydroxytryptamine reuptake site. The studies with positron-emitting 4′-fluorococaines thus support the lack of significance of labeled metabolites or of binding to 5-hydroxytryptamine reuptake sites to PET images taken with [N-methy/-11CH3]cocaine. [11C]NC prepared by O-methylation of norbenzoylecgonine gave PET images with preferential uptake in striatum, but slower clearance from all brain regions than [O-methy/-11CH3]cocaine. [11C]BE prepared by N-methylation of norbenzoylecgonine did not show brain uptake.  相似文献   

15.
The characteristics of dopamine uptake after acute and subacute cocaine administration were determined in striata from WKY and SHR. In acutely-treated (40 mg/kg, s.c.) rats, significant increases in the Vmax of dopamine uptake were observed 30 min after the cocaine injection in both strains, without changes in Km values. The in vitro IC50 for cocaine was significantly decreased at 30 min in WKY and at 2 h in SHR. However, the in vitro IC50 for GBR-12909 was significantly increased at 30 min and at 2 h in both strains following cocaine administration. In both strains, the density (Bmax) of the [3H]GBR-12935 binding site was significantly increased at 30 min and at 2 h with no charges in Kd. In subacutely-treated (20 mg/kg, twice daily for 3 or 7 days) rats, a significant increase in the Km for dopamine uptake was observed in 7 day treated SHR. The in vitro IC50 for GBR-12909 was significantly increased in 3 day treated WKY. The results suggest that cocaine administration alters dopamine uptake and characteristics of dopamine uptake sites in the rat brain.  相似文献   

16.
The action of exogenous polyamines (putrescine, spermidine, and spermine) on `washing' and fusicoccin-stimulated K+ uptake and H+ extrusion through the plasmamembrane in maize (Zea mays L., hybrid line Plenus S 516) root apical segments was studied. The results showed that polyamines inhibit the washing-stimulated K+ influx and H+ extrusion without interfering with K+ uptake and H+ extrusion stimulated by fusicoccin. Spermidine appeared to be the most effective in inhibiting K+ uptake and H+ extrusion while putrescine showed a smaller inhibiting action with respect to the others. The analysis of kinetic constants indicated that the polyamines behave as competitive inhibitors with respect to K+.  相似文献   

17.
The neurotoxic effects of cocaine and methamphetamine (METH) were studied in mice brain with a primary objective to determine the neuroprotective potential of coenzyme Q10 (CoQ10) in drug addiction. Repeated treatment of cocaine or METH induced significant reduction in the striatal dopamine and CoQ10 in mice. Cocaine or METH-treated mice exhibited increased thiobarbituric acid reactive substances (TBARs) in the striatum and cerebral cortex without any significant change in the cerebellum. Complex I immunoreactivity was inhibited in both cocaine and METH-treated mice, whereas tyrosine hydroxylase (TH) immunoreactivity was decreased in METH-treated mice and increased in cocaine-treated mice. Neither cocaine nor METH could induce significant change in α-synuclein expression at the doses and duration we have used in the present study. CoQ10 treatment attenuated cocaine and METH-induced inhibition in the striatal 18F-DOPA uptake as determined by high-resolution microPET neuroimaging. Hence exogenous administration of CoQ10 may provide neuroprotection in drug addiction.  相似文献   

18.
Phosphoenolpyruvate partially inhibits the accumulation of Ca2+ in isolated mung bean (Phaseolus aureus Roxb.) mitochondria. Succinate-supported Ca2+ uptake is twice as sensitive to phosphoenolpyruvate inhibition as is NADH- or malate/pyruvate-supported Ca2+ uptake. Pyruvate, atractylate, and ATP, but not ITP, reverse the phosphoenolpyruvate-induced inhibition. Oxaloacetic acid inhibits succinate-supported Ca2+ uptake completely while partially inhibiting NADH-supported Ca2+ uptake. The oxaloacetate inhibition of NADH-supported Ca2+ uptake is greater than that produced by phosphoenolpyruvate. It is suggested that inhibition of Ca2+ uptake is due to the conversion of phosphoenolpyruvate into oxaloacetate via phosphoenolpyruvate carboxykinase, with oxaloacetate responsible for the actual inhibition of Ca2+ uptake.  相似文献   

19.
The use of heterologous expression systems for studying dopamine (DA) transporter (DAT) function has provided important information corroborating and complementing in situ obtained knowledge. Preliminary experiments with human embryonic kidney cells (HEK293) heterologously expressing varying amounts of DAT suggested fluctuations in the potency of cocaine in inhibiting DA uptake and led to the present systematic assessment of the impact of the density of DAT on its function. Transiently expressing intact HEK293 cells, transfected with increasing amounts of DAT cDNA, displayed increasing levels of surface DAT, binding of the cocaine analog [(3)H]2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane ([(3)H]CFT), and uptake of [(3)H]DA, [(3)H]N-methyl-4-phenylpyridinium ([(3)H]MPP(+)), [(3)H]norepinephrine, and [(3)H]serotonin. However, the amount of DAT cDNA and the DAT expression level required to produce 50% of maximal activity was threefold higher for CFT binding than for DA uptake. Increased DAT expression was accompanied by weakened potency in inhibiting [(3)H]DA uptake for cocaine, CFT, benztropine, and its analog JHW025, GBR 12909 and mazindol; their potency in inhibiting [(3)H]CFT binding was unaffected. Inhibition of uptake by the substrates DA, m-tyramine, d-amphetamine, or MPP(+) was also unaffected. Increasing DAT in stably expressing HEK293 cells by stimulation of gene expression with sodium butyrate also decreased the uptake inhibitory potency of a number of the above blockers without affecting the interaction between substrates and DAT. The present results prompt discussion of models explaining how factors regulating DAT expression at the plasma membrane can regulate DAT function and pharmacology.  相似文献   

20.
Methylphenidate (MPD) is one of the most prescribed drugs for alleviating the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD). However, changes in the molecular mechanisms related to MPD withdrawal and susceptibility to consumption of other psychostimulants in normal individuals or individuals with ADHD phenotype are not completely understood. The aims of the present study were: (i) to characterize the molecular differences in the prefrontal dopaminergic system of SHR and Wistar strains, (ii) to establish the neurochemical consequences of short- (24 hours) and long-term (10 days) MPD withdrawal after a subchronic treatment (30 days) with Ritalin® (Methylphenidate Hydrochloride; 2.5 mg/kg orally), (iii) to investigate the dopaminergic synaptic functionality after a cocaine challenge in adult MPD-withdrawn SHR and Wistar rats. Our results indicate that SHR rats present reduced [3H]-Dopamine uptake and cAMP accumulation in the prefrontal cortex (PFC) and are not responsive to dopaminergic stimuli in when compared to Wistar rats. After a 24-hour withdrawal of MPD, SHR did not present any alterations in [3H]-Dopamine Uptake, [3H]-SCH 23390 binding and cAMP production; nonetheless, after a 10-day MPD withdrawal, the results showed a significant increase of [3H]-Dopamine uptake, of the quantity of [3H]-SCH 23390 binding sites and of cAMP levels in these animals. Finally, SHR that underwent a 10-day MPD withdrawal and were challenged with cocaine (10 mg/kg i.p.) presented reduced [3H]-Dopamine uptake and increased cAMP production. Wistar rats were affected by the 10-day withdrawal of MPD in [3H]-dopamine uptake but not in cAMP accumulation; in addition, cocaine was unable to induce significant modifications in [3H]-dopamine uptake and in cAMP levels after the 10-day withdrawal of MPD. These results indicate a mechanism that could explain the high comorbidity between ADHD adolescent patients under methylphenidate treatment and substance abuse in adult life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号