首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Maturation of primary neuronal cultures is accompanied by an increase in the proportion of cells that exhibit biphasic increase in free cytoplasmic Ca2+ ([Ca2+]i) followed by synchronic decrease in electrical potential difference across the inner mitochondrial membrane (DeltaPsim) in response to stimulation of glutamate receptors. In the present study we have examined whether the appearance of the second phase of [Ca2+]i change can be attributed to arachidonic acid (AA) release in response to the effect of glutamate (Glu) on neurons. Using primary culture of rat cerebellar granule cells we have investigated the effect of AA (1-20 microM) on [Ca2+]i, DeltaPsim, and [ATP] and changes in these parameters induced by neurotoxic concentrations of Glu (100 microM, 10-40 min). At =10 microM, AA caused insignificant decrease in DeltaPsim without any influence on [Ca2+]i. The mitochondrial ATPase inhibitor oligomycin enhanced AA-induced decrease in DeltaPsim; this suggests that AA may inhibit mitochondrial respiration. Addition of AA during the treatment with Glu resulted in more pronounced augmentation of [Ca2+]i and the decrease in DeltaPsim than the changes in these parameters observed during independent action of AA; removal of Glu did not abolish these changes. An inhibitor of the cyclooxygenase and lipoxygenase pathways of AA metabolism, 5,8,11,14-eicosatetraynoic acid, increased the proportion of neurons characterized by Glu-induced biphasic increase in [Ca2+]i and the decrease in DeltaPsim. Palmitic acid (30 microM) did not increase the percentage of neurons exhibiting biphasic response to Glu. Co-administration of AA and Glu caused 2-3 times more pronounced decrease in ATP concentrations than that observed during the independent effect of AA and Glu. The data suggest that AA may influence the functional state of mitochondria, and these changes may promote biphasic [Ca2+]i and DeltaPsim responses of neurons to the neurotoxic effect of Glu.  相似文献   

2.
Excitatory amino acids: modes of action on hippocampal pyramidal cells   总被引:1,自引:0,他引:1  
Recent pharmacological and biochemical evidence supports the idea that acidic amino acids act as neurotransmitters at several excitatory synapses in the hippocampus. In this paper I review work comparing certain physiological actions of N-methyl-DL-aspartate (NMA) and L-glutamate in a hippocampal slice preparation. Intracellular recordings were made from pyramidal neurons bathed in 1 microM tetrodotoxin; agonists were applied by focal ionophoresis. NMA evoked calcium spikes and produced an apparent increase in the input resistance of pyramidal cells, whereas glutamate was very weak in these respects. The depolarization and conductance change caused by NMA were voltage dependent: both could be abolished by hyperpolarizing the cell to -70 to -90 mV, but no reversal potential could be demonstrated. The results of pharmacological and ionic manipulations suggest that the primary action of NMA does not involve reduction of a conventional potassium conductance. It is suggested that N-methyl-D-aspartate (NMDA) receptor activation increases a voltage-sensitive calcium conductance leading to a transient rise in cytoplasmic calcium concentration. The significance of this event is discussed with respect to the possible synaptic functions of chemically gated, voltage-sensitive calcium channels, and in particular with respect to the possible roles that NMDA receptors might serve in the genesis of long-term potentiation of excitatory synapses in the hippocampus.  相似文献   

3.
Mechanisms mediating neurotoxic glutamate effect on the rat brain cortex neurons developing in the primary tissue culture for 7 days have been studied. The neuron death identification was performed using the vital stain trypane blue and a fluorescent kit. Both dynamics and the neurodegeneration degree, produced by Glu and achieved by the experiment end depended on its concentration. For example, in the presence of 1 mmole/l and 10 mmole/l Glu the number of dead neurons by the 6th hour of recording was about 30 and 60%, respectively. The effect of 1 mmole/l Glu has the pharmacological sensitivity coinciding with the NMDA effect: it was potentiated by Gly, inhibited by AP5, and decreased essentially in the presence of 2 mmole/l Mg2+ in saline. The neurotoxic effect of 3 mmole/l Glu was resistant to effects of substances specific to towards NMDA-R, i.e., it seemed to be mediated by activation of other Glu-R. To confirm this suggestion there was studied the neurotoxic effect of AMPA and KA—agonists of the AMPA-R and KA-R. In the presence of both KA concentrations (30 and 300 μmole/l) its effect was similar and the number of dead neurons amounted to about 55% by the experiment end. Neurotoxicity of 10 μmole/l AMPA was expressed to the lesser degree: the number of dead neurons did not exceed 20% by 5 h of recording. However, addition of 100 μmole/l of cyclothiazide that eliminated AMPA-R desensitization was accompanied by a significant increase of the AMPA effect, it became as pronounced as the KA effect. It is essential that CNQX protected the neurons from death caused by AMPA and by KA actions. The data identify two components of the Glu neurotoxic effect. Effect of low concentrations is mediated by activation of NMDA-R, while effect of high concentration is determined by predominant activation of AMPA-R and KA-R.  相似文献   

4.
To ensure precise neurotransmission and prevent neurotoxic accumulation, l-glutamate (Glu), the major excitatory neurotransmitter in the brain, is cleared from the synapse by glutamate transporters (GluTs). The molecular components of Glu synapses are highly conserved between Caenorhabditis elegans and mammals, yet the absence of synaptic insulation in C. elegans raises fundamental questions about Glu clearance strategies in the nematode nervous system. To gain insight into how Glu clearance is accomplished and how GluTs impact neurotransmission, we probed expression and function of all 6 GluTs found in the C. elegans genome. Disruption of each GluT impacts multiple Glu-dependent behaviors, with GluT combinations commonly increasing the severity of behavioral deficits. Interestingly, the sole GluT that we find expressed in neurons is localized predominantly in presynaptic neurons, in contrast to the postsynaptic concentration of neuronal GluTs typical in mammals. Moreover, 3 of the 6 GluT genes appear strongly expressed on the capillary excretory canal cell, where they affect Glu-dependent behaviors from positions distal to glutamatergic circuits. Indeed, our focused study of GLT-3, one of the distally expressed GluTs, shows that despite this distance, GLT-3 function can balance the activity mediated by synaptic release and synaptic receptors. The effects of distal GluTs on glutamatergic circuits support that Glu diffusion outside the vicinity of the synapse is a critical factor in C. elegans neurotransmission. Together with the presynaptic localization of neuronal GluTs, these observations suggest an unusual strategy for Glu clearance in C. elegans.  相似文献   

5.
The actions of ionophoretically applied N-methyl aspartate (NMA), quisqualate, and kainate, thought to activate three different types of excitatory amino acid receptors, were studied on pyramidal neurons of the rat pyriform cortex, maintained in an isolated, submerged, and perfused brain slice. Intracellular recordings were made with either K acetate or CsCl electrodes. In most neurons all three agonists elicited monophasic responses which could be evoked at 20-sec intervals. Some neurons showed biphasic responses, most commonly to kainate but, on occasion, also for quisqualate. The slower component appeared to be correlated with excitotoxicity and, consequently, was difficult to study. As a result the kainate responses studied were from neurons selected for having a single component. In neurons selected for having a linear current-voltage relationship or neurons loaded with Cs to suppress K conductance and linearize the current-voltage relationship, the average changes in resistance recorded during ionophoretic responses at resting potential were as follows: NMA, 131.2 +/- 6.7% of control; kainate, 104.7 +/- 5.8% of control; and quisqualate, 92.8 +/- 2.8% of control. The magnitude and direction of the conductance change were very reproducible in any one neuron, but especially for kainate some cells showed clear conductance increases, while others showed clear conductance decreases. Using CsCl electrodes it was possible to reduce K+ conductance and depolarize the neurons over a wider range. By passing depolarizing current it was possible to reverse the responses. The response to all three agonists reversed at the same depolarized potential. This observation indicates that while there are differences in the ionic channels associated with the three agonists at resting potential, the channels have similar properties at more depolarized potentials. Responses to all three agonists were influenced by the concentrations of divalent cations in the perfusion medium. The NMA responses were most sensitive to Mg, increasing in amplitude in the absence of Mg and being depressed by Mg elevation. All responses were sensitive to Ca, with discharges being greatly increased by low Ca and depressed by high Ca. The kainate response was most sensitive to Ca concentration changes. Unlike reports from other preparations the apparent conductance decreases to NMA were not altered by the perfusion of solutions with either no added Mg or no added Ca. The NMA response was very much reduced in either Co (1-2 mM) or Zn (100-200 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Aggregated α-synuclein (α-syn) is a characteristic pathological finding in Parkinson's disease and related disorders, such as dementia with Lewy bodies. Recent evidence suggests that α-syn oligomers represent the principal neurotoxic species; however, the pathophysiological mechanisms are still not well understood. Here, we studied the neurophysiological effects of various biophysically-characterized preparations of α-syn aggregates on excitatory synaptic transmission in autaptic neuronal cultures. Nanomolar concentrations of large α-syn oligomers, generated by incubation with organic solvent and Fe(3+) ions, were found to selectivity enhance evoked α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor, but not NMDA-receptor, mediated synaptic transmission within minutes. Moreover, the analysis of spontaneous AMPA-receptor-mediated miniature synaptic currents revealed an augmented frequency. These results collectively indicate that large α-syn oligomers alter both pre- and post-synaptic mechanisms of AMPA-receptor-mediated synaptic transmission. The augmented excitatory synaptic transmission may directly contribute to nerve cell death in synucleinopathies. Indeed, already low micromolar glutamate concentrations were found to be toxic in primary cultured neurons incubated with large α-syn oligomers. In conclusion, large α-syn oligomers enhance both pre- and post-synaptic AMPA-receptor-mediated synaptic transmission, thereby aggravating intracellular calcium dyshomeostasis and contributing to excitotoxic nerve cell death in synucleinopathies.  相似文献   

7.
Homocysteine, a monocarboxylic, sulfur-containing amino acid, produces convulsions in rats and mice when administered systemically. Convulsions and high serum concentrations of homocysteine are among the symptoms that characterize patients with homocystinuria, a hereditary disorder of amino acid metabolism. In order to evaluate the effects of homocysteine on the central nervous system directly, extracellular recordings were made from neurons in rat cerebral cortex, cerebellum and midbrain during local application of homocysteine by pressure ejection or iontophoresis. Both methods of drug delivery produced dose-dependent increases in the activity of neurons in every area tested. Activity was increased by D, L-homocysteine and L-glutamate in 67 percent of cells tested with both drugs. The doses required to produce equivalent excitations in this group of cells were similar, suggesting that homocysteine is at least as potent as glutamate. The excitatory effects of both homocysteine and glutamate were antagonized by local application of betaine, a biological methyl donor which blocks convulsions produced by systematic administration of pentylenetetrazol and electroshock as well as homocysteine. The effects of local application of homocysteine were also blocked by local application of the glutamate antagonist glutamate diethylester (GDEE). In 6 of 7 cells tested, GDEE appeared to preferentially affect homocysteine-induced excitations. These data indicate that homocysteine has an excitatory action on neurons, a finding which may account for some of the symptoms associated with certain disorders of amino acid metabolism.  相似文献   

8.
J V Nadler 《Life sciences》1979,24(4):289-299
Kainic acid, an anthelmintic drug structurally related to glutamate, has excitatory electrophysiological actions on neurons in the vertebrate CNS and at the invertebrate neuromuscular junction. Recently, it has been shown to destroy neuronal cell bodies and dendrites in several regions of the vertebrate CNS, while sparing afferent fibers and fibers of passage. Kainic acid can be used to make lesions in experimental animals that closely resemble the pathology associated with certain neurological conditions in man. Its actions on vertebrate and invertebrate nervous systems are reviewed and possible neuroexcitatory and neurotoxic mechanisms are considered.  相似文献   

9.
Potentiation of the excitatory response to L-glutamate (Glu) by L-aspartate (Asp), similar to that which has been described at the crustacean neuromuscular junction, is observed in Aplysia neurons which are glutamate sensitive. Potentiation of the inhibitory responses to ionophoretically applied Glu in neurons preconditioned with Asp permits experiments which serve to differentiate among four hypotheses previously proposed to explain the underlying mechanism of the phenomenon. The potentiation is inhibited by cooling (Q10 = 1.3 +/- 0.2) and is blocked in Na+-free seawater, where the response to Glu applied alone is increased in both amplitude and duration. These results are most consistent with the view that Glu is normally removed from the extracellular medium through an active reuptake process which is Na+ dependent, is slightly temperature sensitive, and may be blocked by Asp. Potentiation of the excitatory response to L-glutamate (Glu) by L-aspartate (Asp) has been previously described at the crustacean neuromuscular junction (Kravitz et al., 1970; Nistri and Constanti, 1979). This potentiation has been attributed to an Asp-induced change in conformation of the Glu receptor, thereby increasing its affinity for Glu (Shank and Freeman, 1975); suppression of the rate of desensitization of the Glu receptor induced by Asp (Dudel, 1977); blockade by Asp of a Glu reuptake process (Crawford and McBurney, 1977); and release, triggered by Asp, of a bound store of Glu (Constanti and Nistri, 1978).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Rizvi SS  Altaf S  Naseem AA  Asif M  Rasul Z  Qayyum M 《Life sciences》2001,68(9):1083-1093
The excitatory amino acids (EAAs), glutamate and aspartate, acting predominantly on N-methyl-D-aspartate (NMDA) receptor, have been shown to be involved in the central regulation of the secretion of several anterior pituitary hormones including prolactin (PRL), whereas ketamine hydrochloride (KH), a widely used anesthetic, has been reported to antagonize a variety of NMDA receptor mediated actions of these EAAs. In the present study, the effect of KH on basal PRL levels as well as on N-methyl-D,L-aspartate (NMA), an agonist of NMDA receptor, induced plasma PRL secretion was investigated in the adult male rhesus monkey. The values were compared to those obtained from the same animals restrained in primate chairs. The plasma PRL concentrations were higher in animals receiving KH administered either intramuscularly (2.5 mg/kg BW at 30 min intervals) or intravenously (10 mg/kg BW) as compared to those observed in the unanesthetized chair-restrained monkeys. NMA induced an unequivocal increase in plasma PRL concentrations in both conscious chair-restrained and KH anesthetized monkeys, but the response was greater in anesthetized animals than the conscious monkeys. The present findings suggest that KH has stimulatory effects on both basal and NMA induced plasma PRL secretion.  相似文献   

12.
Presynaptic nicotinic acetylcholine receptors (nAChRs) were studied in myenteric plexus preparations from guinea pig ileum using intracellular electrophysiological methods. Microapplication of nicotine (1 mM) caused a biphasic depolarization in all AH neurons (n = 30) and in 36 of 49 S neurons. Cytisine (1 mM) caused fast depolarizations in S neurons and no response in AH neurons. Mecamylamine (10 microM) blocked all responses caused by nicotine and cytisine. TTX (0.3 microM) blocked slow excitatory synaptic potentials in S and AH neurons but had no effect on fast depolarizations caused by nicotine. Nicotine-induced slow depolarizations were reduced by TTX in two of twelve AH neurons (79% inhibition) and four of nine S neurons (90+/-12% inhibition). Slow nicotine-induced depolarizations in the remaining neurons were TTX resistant. TTX-resistant slow depolarizations were inhibited after neurokinin receptor 3 desensitization caused by senktide (0.1 microM); senktide desensitization inhibited the slow nicotine-induced depolarization by 81+/-5% and 63+/-15% in AH and S neurons, respectively. A low-calcium and high-magnesium solution blocked nicotine-induced slow depolarizations in AH neurons. In conclusion, presynaptic nAChRs mediate the release of substance P and/or neurokinin A to cause slow depolarizations of myenteric neurons.  相似文献   

13.
为了探讨糖皮质激素对海马兴奋性神经元和抑制性神经元的作用,本实验将地塞米松注入大白鼠侧脑室,2h 后经Nissl染色法、免疫组织化学方法和细胞计数法观察了海马谷氨酸免疫反应性(GluIR)神经元和γ氨基丁酸免疫反应性(GABAIR)神经元的变化。结果显示:(1)CA1、CA3 和SG区的GluIR神经元明显增多,特别是CA1 区。经细胞计数统计分析表明,与对照组相比CA1 有极显著性差异(P< 0001),CA3区有显著性差异(001< P< 005),SG处无明显差异(P> 005)。(2)与对照组相比,GABAIR神经元无明显变化。结果表明,糖皮质激素有增加海马谷氨酸能神经元的作用。尽管γ氨基丁酸能神经元无明显变化,并不表明糖皮质激素对其无影响  相似文献   

14.
Piracetam (at concentrations of 10(-6) and 10(-5), but not 10(-4) and 5 X 10(-4) M) decreased K+-stimulated 3H-D-aspartate release. Proline enhanced K+-stimulated D-aspartate release, and its effect was antagonized by piracetam at a concentration that had no effect on K+-stimulated release. Quisqualic acid attenuated K+-stimulated D-aspartate release, with the effect antagonized by GDEE. GDEE also blocked the effect of piracetam, but not proline. The data are discussed in terms of the role of excitatory amino acid neurotransmission in the mechanisms of amnestic and antihypoxic piracetam action.  相似文献   

15.
There are two kinds of neurotransmissions that occur in brain. One is neuron to neuron at synapses, and the other is neuron to glia via extracellular fluid (ECF), both of which are important for maintenance of proper neuronal functioning. For neuron to neuron communications, several potent amino acid neurotransmitters are used within the confines of synaptic space. However, their presence at elevated concentrations in extra-synaptic space could be detrimental to well organized neuronal functioning. The significance of the synthesis and release of N-acetylaspartylglutamate (NAAG) by neurons has long been a puzzle since glutamate (Glu) itself is the “key” that can interact with all Glu receptors on membranes of all cells. Nonetheless, neurons synthesize this acetylated dipeptide, which cannot be catabolized by neurons, and release it to ECF where its specific physiological target is the Glu metabotropic receptor 3 on the surface of astrocytes. Since Glu is excitotoxic at elevated concentrations, it is proposed that formation and release of NAAG by neurons allows large quantities of Glu to be transported in ECF without the risk of injurious excitotoxic effects. The metabolic mechanism used by neurons is a key–lock system to detoxify Glu during its intercellular transit. This is accomplished by first synthesizing N-acetylaspartate (NAA), and then joining this molecule via a peptide bond to Glu. In this paper, a hypothesis is presented that neurons synthesize a variety of relatively nontoxic peptides and peptide derivatives, including NAA, NAAG, homocarnosine (γ-aminobutyrylhistidine) and carnosine (β-alanylhistidine) from potent excitatory and inhibitory amino acids for the purpose of releasing them to ECF to function as cell-specific neuron-to-glia neurotransmitters.  相似文献   

16.
The effects on synaptic transmission of glutamic acid diethylester (GDEE), a glutamate receptor blocker, were investigated by recording spike activity from single nerve fibers in the electroreceptor cells of the skate (Raja clavata) ampullae of Lorenzini. It was found that adding GDEE to the bathing medium led to a concentration-dependent reduction in or complete blockade of background and evoked receptor activity; 10–6 M GDEE was the minimum effective concentration. It was also shown that GDEE reversibly blocked postsynaptic response produced by excitatory amino acids: L-glutamate (L-GLU) and L-asparate (L-ASP). Findings suggest the involvement of L-GLU or a related substance in synaptic transmission in the ampullae of Lorenzini.I. P. Pavlov Institute of Physiology of the Academy of Science of the USSR, Leningrad, USSR. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 323–327, May–June, 1987.  相似文献   

17.
The neurotoxic actions of quinolinic acid in the central nervous system   总被引:6,自引:0,他引:6  
Excitotoxins such as kainic acid, ibotenic acid, and quinolinic acid are a group of molecules structurally related to glutamate or aspartate. They are capable of exciting neurons and producing axon sparing neuronal degeneration. Quinolinic acid (QUIN), an endogenous metabolite of the amino acid, tryptophan, has been detected in brain and its concentration increases with age. The content of QUIN in the brain and the activity of the enzymes involved in its synthesis and metabolism show a regional distribution. The neuroexcitatory action of QUIN is antagonized by magnesium (Mg2+) and the aminophosphonates, proposed N-methyl-D-aspartate (NMDA) receptor antagonists, suggesting that QUIN acts at the Mg2+ -sensitive NMDA receptor. Like its excitatory effects, QUIN's neurotoxic actions in the striatum are antagonized by the aminophosphonates. This suggests that QUIN neurotoxicity involves the NMDA receptor and (or) another receptor sensitive to the aminophosphonates. The neuroexcitatory and neurotoxic effects of QUIN are antagonized by kynurenic acid (KYN), another metabolite of tryptophan. QUIN toxicity is dependent on excitatory amino acid afferents and shows a regional variation in the brain. Local injection of QUIN into the nucleus basalis magnocellularis (NBM) results in a dose-dependent reduction in cortical cholinergic markers including the evoked release of acetylcholine. A significant reduction in cortical cholinergic function is maintained over a 3-month period. Coinjection of an equimolar ratio of QUIN and KYN into the NBM results in complete protection against QUIN-induced neurodegeneration and decreases in cortical cholinergic markers. In contrast, focal injections of QUIN into the frontoparietal cortex do not alter cortical cholinergic function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Acrylamide (AA) is a well-known industrial monomer with carcinogenic, mutagenic, neurotoxic and endocrine disruptive effects on living organisms. AA has been the subject of renewed interest owing to its presence in various food products. We investigated the potential adverse effects of oral AA treatment on the endocrine pancreas of juvenile rats using histochemical, immunohistochemical, stereological and biochemical methods. Thirty juvenile male Wistar rats were divided into one control and two AA treatment groups: one treated with 25 mg/kg AA and the other treated with 50 mg/kg AA for 21 days. We found a significant decrease in β-cell mass. The significant decrease in β-cell optical density and unchanged blood glucose levels indicate that normoglycemia in AA treated rats may result from intensive exocytosis of insulin-containing secretory granules. By contrast with β-cells, we observed increased α-cell mass. The slight increase in α-cell cytoplasmic volume suggests retention of glucagon in α-cells, which is consistent with the significant increase in α-cell optical density for AA treated animals. The number of islets of Langerhans did not change significantly in AA treated groups. Our findings suggest that AA treatment causes decreased β-cell mass and moderate α-cell mass increase in the islets of Langerhans of juvenile male Wistar rats.  相似文献   

19.
The migrating motor complex (MMC) is a cyclic motor pattern with several phases enacted over the entire length of the small intestine. This motor pattern is initiated and coordinated by the enteric nervous system and modulated by extrinsic factors. Because in vitro preparations of the MMC do not exist, it has not been possible to determine the intrinsic nerve circuits that manage this motor pattern. We have used computer simulation to explore the possibility that the controlling circuit is the network of AH/Dogiel type II (AH) neurons. The basis of the model is that recurrent connections between AH neurons cause local circuits to enter a high-firing-rate state that provides the maximal motor drive observed in phase III of the MMC. This also drives adjacent segments of the network causing slow migration. Delayed negative feedback within the circuit, provided by activity-dependent synaptic depression, forces the network to return to rest after passage of phase III. The anal direction of propagation is a result of slight anal bias observed in projections of AH neurons. The model relates properties of neurons to properties of the MMC cycle: phase III migration speed is governed by neuron excitability, MMC cycle length is governed by the rate of recovery of synaptic efficacy, and phase III duration is governed by duration of slow excitatory postsynaptic potentials in AH neurons. In addition, the model makes experimental predictions that can be tested using standard techniques.  相似文献   

20.
It has been suggested that Glutamate (Glu), which has neurotoxic properties and is thought to be the excitatory neurotransmitter release at corticostriatal synapses, might play a role in neurological disorders involving the striatum. To establish normative data which may serve as baseline for evaluating experimental evidence relevant to this proposal, we have studied Glu concentrations and synaptosomal Glu high affinity uptake kinetics in the striatum of male and female rats at various ages from 3 to 19 months. Here we report that all parameters studied (Glu levels, Vmax and Km of uptake) undergo significant changes with advancing age. Striatal Glu concentrations are consistently in the range of 12 mmol/kg wet weight in early adult life (3–6 months) but drop to 10 mmol/kg by 10 months and 9.6 mmol/kg by 19 months (an overall 20% decrease). Concomitantly, significant reductions in Vmax and km of the Glu high affinity transport system occur, suggesting an age-related loss in the number of high affinity Glu transport sites and a compensatory increase in affinity of remaining sites for Glu. Tentatively we propose that degenerative changes in the putatively glutamergic corticostriatal tract, as a normal aspect of aging, is the simplest and most likely explanation for the observed changes. If such changes with normal aging also occur in humans, this must be taken into consideration in the interpretation of studies pertaining to the possible role of Glu in neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号