首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Lung surfactant (LS) is an extra-cellular lipid-protein system responsible for maintaining low surface tension in the lung and alveolar stability. Serum proteins cause dysfunction of this material, e.g. in adult respiratory distress syndrome (ARDS). BLES is a clinically used LS consisting of most of the lipids and associated proteins from bovine lung lavage. Aqueous phases of BLES at 30% and 70% hydration, with and without 5% by weight of bovine serum albumin (BSA), calculated on the amount of lipids, were studied using X-ray diffraction during cooling from 42 to 5 degrees C. The diffraction curves are consistent with a transition from a lamellar liquid crystalline phase to a gel phase transition at cooling in the interval 30-20 degrees C. The long-spacings correspond to a reduction of the bilayer thickness during this transition. The wide-angle region shows a peak at 4.1 A below 25 degrees C, which is characteristic of the hexagonal chain packing of the gel phase. The perturbation of the bilayers by the presence of BSA seems to induce a significant decrease of the bilayer thickness. Calculations on the observed limits of swelling (taking place in the range 50-60%) indicate that BSA is closely associated with the BLES bilayers, probably due to electrostatic interaction with the cationic surfactant proteins SP-B and SP-C. This study show that the LS lipid structural organizations are extremely susceptible to small amounts of serum albumin, which may have implications in surfactant related lung disease and clinical applications of surfactant therapy.  相似文献   

2.
Aqueous dispersions of a porcine lung surfactant (PLS) extract with and without cholesterol supplementation were analyzed by X-ray scattering. Lamellar liquid-crystalline and gel-type bilayer phases are formed, as in pure phosphatidylcholine (PC)-cholesterol systems. This PLS extract, developed for clinical applications, has a cholesterol content of less than 1% (w/w). Above the limit of swelling, the bilayer structure shows a melting (main) transition during heating at about 34 degrees C. When 13 mol% cholesterol was added to PLS, so that the cholesterol content of natural lung surfactant was reached, the X-ray scattering pattern showed pronounced changes. The main transition temperature was reduced to the range 20-25 degrees C, whereas according to earlier studies of disaturated PC-cholesterol bilayers in water the main transition remains almost constant when the amount of solubilized cholesterol is increased. Furthermore, the changes in scattering pattern at passing this transition in PLS-cholesterol samples were much smaller than at the same transition in PLS samples. These effects of cholesterol solubilization can be related to phase segregation within the bilayers, known from pure PC-cholesterol systems. One phase, solubilizing about 8 mol% cholesterol, exhibits a melting transition, whereas the other bilayer phase, with a liquid-crystalline disordered conformation, has a cholesterol content in the range 20-30 mol% and this phase shows no thermal transition. The relative amount of bilayer lipids that is transformed at the main transition in the PLS-cholesterol sample is therefore only half compared to that in PLS samples. The reduction in transition temperature in the segregated bilayer of lung surfactant lipids is probably an effect of enrichment of disaturated PC species in the phase, which is poor in cholesterol. This work indicates that cholesterol in lung surfactant regulates the crystallization behavior.  相似文献   

3.
Pulmonary surfactant: phase behavior and function   总被引:5,自引:0,他引:5  
Pulmonary surfactant functions by first flowing rapidly into the alveolar air/water interface, but then resisting collapse from the surface when the adsorbed interfacial film is compressed during exhalation. Widely accepted models emphasize the importance of phase behavior in both processes. Recent studies show, however, that fluidity is a relatively minor determinant of adsorption and that solid films, which resist collapse, can form by kinetic processes unrelated to equilibrium phase behavior.  相似文献   

4.
SP-B and SP-C alter diffusion in bilayers of pulmonary surfactant   总被引:2,自引:0,他引:2       下载免费PDF全文
Schram V  Hall SB 《Biophysical journal》2004,86(6):3734-3743
The hydrophobic proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface by an unknown mechanism. We tested the hypothesis that these proteins accelerate adsorption by disrupting the structure of the lipid bilayer, either by a generalized increase in fluidity or by a focal induction of interfacial boundaries within the bilayer. We used fluorescence recovery after photobleaching to measure diffusion of nitrobenzoxadiazolyl-dimyristoyl-phosphatidylethanolamine between 11 and 54 degrees C in multilayers containing the complete set of lipids and proteins in calf lung surfactant extract (CLSE), or the complete set of neutral and phospholipids without the proteins. Above 35 degrees C, Arrhenius plots of diffusion were parallel for CLSE and neutral and phospholipids, but shifted to lower values for CLSE, suggesting that the proteins rigidify the lipid bilayer rather than producing the proposed increase in membrane fluidity. The slopes of the Arrhenius plots for CLSE were steeper below 35 degrees C, suggesting that the proteins induce phase separation at that temperature. The mobile fraction fell below 27 degrees C, consistent with a percolation threshold of coexisting gel and liquid-crystal phases. The induction of lateral phase separation in CLSE, however, does not correlate with apparent changes in adsorption kinetics at this temperature. Our results suggest that SP-B and SP-C accelerate adsorption through a mechanism other than the disruption of surfactant bilayers, possibly by stabilizing a high-energy, highly curved adsorption intermediate.  相似文献   

5.
Pharmacy-grade exogenous lung surfactant preparations of bovine and porcine origin, dispersed in physiological electrolyte solution have been studied. The organization and dynamics at the air/water interface at physiological temperature was analysed by neutron reflection. The results show that a well-defined surface phase is formed, consisting of a multilayer structure of lipid/protein bilayers alternating with aqueous layers, with a repetition period of about 70 A and correlation depths of 3 to >25 bilayers, depending on electrolyte composition and time. The experimental surfactant concentration of 0.15% (w/w) is far below that used in therapeutic application of exogenous surfactants and it is therefore likely that similar multilayer structures are also formed at the alveolar surface in the clinical situation during surfactant substitution therapy. Lung surfactant preparations in dry form swell in aqueous solution towards a limit of about 60% (w/w) of water, forming a lamellar liquid-crystalline phase above about 34 degrees C, which disperses into lamellar bodies at higher water concentrations. The lamellar spacings in the surface multilayers at the air/water interface are smaller than those in the saturated limit even though they are in contact with much greater water concentrations. The surface multilayers are laterally disordered in a way that is consistent with fragments of Lalpha-phase lamellae. The near surface layers of the multilayer structure have a significant protein content (only SP-B and SP-C are present in the preparations). The results demonstrate that a multilayer structure can be formed in exogenous surfactant even at very low concentrations and indicate that multilayers need to be incorporated into present interpretations of in vitro studies of similar lung surfactant preparations, which are largely based on monolayer models.  相似文献   

6.
To determine if lateral phase separation occurs in films of pulmonary surfactant, we used epifluorescence microscopy and Brewster angle microscopy (BAM) to study spread films of calf lung surfactant extract (CLSE). Both microscopic methods demonstrated that compression produced domains of liquid-condensed lipids surrounded by a liquid-expanded film. The temperature dependence of the pressure at which domains first emerged for CLSE paralleled the behavior of its most prevalent component, dipalmitoyl phosphatidylcholine (DPPC), although the domains appeared at pressures 8-10 mN/m higher than for DPPC over the range of 20-37 degrees C. The total area occupied by the domains at room temperature increased to a maximum value at 35 mN/m during compression. The area of domains reached 25 +/- 5% of the interface, which corresponds to the predicted area of DPPC in the monolayer. At pressures above 35 mN/m, however, both epifluorescence and BAM showed that the area of the domains decreased dramatically. These studies therefore demonstrate a pressure-dependent gap in the miscibility of surfactant constituents. The monolayers separate into two phases during compression but remain largely miscible at higher and lower surface pressures.  相似文献   

7.
The primary function of pulmonary surfactant is to reduce the surface tension (ST) created at the air-liquid interface in the lung. Surfactant is a complex mixture of lipids and proteins and its function is influenced by physiological parameters such as metabolic rate, body temperature and breathing. In the microchiropteran bat Chalinolobus gouldii these parameters fluctuate throughout a 24 h period. Here we examine the surface activity of surfactant from warm-active and torpid bats at both 24 degrees C and 37 degrees C to establish whether alterations in surfactant composition correlate with changes in surface activity. Bats were housed in a specially constructed bat room at Adelaide University, at 24 degrees C and on a 8:16 h light:dark cycle. Surfactant was collected from bats sampled during torpor (2535 degrees C). Alterations in the lipid composition of surfactant occur with changes in the activity cycle. Most notable is an increase in surfactant cholesterol (Chol) with decreases in body temperature [Codd et al., Physiol. Biochem. Zool. 73 (2000) 605-612]. Surfactant from active bats was more surface active at higher temperatures, indicated by lower ST(min) and less film area compression required to reach ST(min) at 37 degrees C than at 24 degrees C. Conversely, surfactant from torpid bats was more active at lower temperatures, indicated by lower ST(min) and less area compression required to reach ST(min) at 24 degrees C than at 37 degrees C. Alterations in the Chol content of bat surfactant appear to be crucial to allow it to achieve low STs during torpor.  相似文献   

8.
The physical properties of organized system (bilayers and monolayers at the air water interface) composed of bovine lipid extract surfactant (BLES) were studied using correlated experimental techniques. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN)-labeled giant unilamelar vesicles (mean diameter approximately 30 microm) composed of BLES were observed at different temperatures using two-photon fluorescence microscopy. As the temperature was decreased, dark domains (gel-like) appeared at physiological temperature (37 degrees C) on the surface of BLES giant unilamelar vesicles. The LAURDAN two-photon fluorescent images show that the gel-like domains span the lipid bilayer. Quantitative analysis of the LAURDAN generalized polarization function suggests the presence of a gel/fluid phase coexistence between 37 degrees C to 20 degrees C with low compositional and energetic differences between the coexisting phases. Interestingly, the microscopic scenario of the phase coexistence observed below 20 degrees C shows different domain's shape compared with that observed between 37 degrees C to 20 degrees C, suggesting the coexistence of two ordered but differently organized lipid phases on the bilayer. Epifluorescence microscopy studies of BLES monomolecular films doped with small amounts of fluorescent lipids showed the appearance and growth of dark domains (liquid condensed) dispersed in a fluorescent phase (liquid expanded) with shapes and sizes similar to those observed in BLES giant unilamelar vesicles. Our study suggests that bovine surfactant lipids can organize into discrete phases in monolayers or bilayers with equivalent temperature dependencies and may occur at physiological temperatures and surface pressures equivalent to those at the lung interface.  相似文献   

9.
During respiration, it is accepted that oxygen diffuses passively from the lung alveolar spaces through the respiratory epithelium until reaching the pulmonary capillaries, where blood is oxygenated. It is also widely assumed that pulmonary surfactant, a lipid-protein complex secreted into alveolar spaces, has a main surface active function, essential to stabilize the air-liquid interface, reducing in this way the work of breathing. The results of the present work show that capillary water layers containing enough density of pulmonary surfactant membranes transport oxygen much faster than a pure water phase or a water layer saturated with purely lipidic membranes. Membranes reconstituted from whole pulmonary surfactant organic extract, containing all the lipids plus the hydrophobic surfactant proteins, permit also very rapid oxygen diffusion, substantially faster than achieved by membranes prepared from the surfactant lipid fraction depleted of proteins. A model is proposed suggesting that protein-promoted membrane networks formed by pulmonary surfactant might have important properties to facilitate oxygenation through the thin water layer covering the respiratory surface.  相似文献   

10.
Nuclear magnetic resonance spectroscopy has been used to investigate the effect of the lung surfactant apolipoproteins B/C on dipalmitoylphosphatidylcholine to address the mechanism by which the adsorption rate of phospholipids from the bulk to the air/water interface is enhanced. Apolipoproteins B/C were isolated from bovine lung and separated from associated lipids by lipophilic Sephadex column chromatography. Amino acid analysis indicated the presence of both apolipoproteins B and C. The 13C chemical shift anisotropy of DPPC was determined as a function of temperature. Previous workers (Wittebort et al., Biochemistry, 20 (1981) 3487-3502) have concluded that the observed magnitude of the chemical shift anisotropy of the carbonyl group of the sn-2 acyl chain in pure DPPC is a result of rapid rotation about an axis along the length of the phospholipid both in the gel and liquid crystalline state. The orientation of the carbonyl group with respect to the axis of diffusion, however, undergoes an approximately 25-30 degrees shift in passage from the gel to liquid crystalline state, with the intermediate, rippled (P beta') state composed of an exchange between these two orientations. The presence of physiological concentrations SP-B/C reduced the width of the anisotropy of DPPC below but had no effect on lipids above the main phase transition temperature. This suggests that SP-B/C has a general effect on the entire assembly of lipids. The temperature of the onset of the orientational change is lowered indicating a portion of the lipids are affected by the lung surfactant apolipoproteins.  相似文献   

11.
Nag K  Keough KM  Morrow MR 《Biophysical journal》2006,90(10):3632-3642
Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in surfactant at NMR timescales (10(-5) s). Persistent phase separation at physiological temperature may provide for a basis for loss of surface activity of surfactant in dysfunction and disease.  相似文献   

12.
Pulmonary alveolar type II cells synthesize, secrete, and recycle the components of pulmonary surfactant. In this report we present evidence that dipalmitoylphosphatidylcholine is a potent inhibitor of surfactant lipid secretion by type II cells. Monoenoic and dienoic phosphatidylcholines with fatty acids of 16 or 18 carbons are ineffective as inhibitors of surfactant lipid secretion. In contrast, disaturated phosphatidylcholines, with either symmetric or asymmetric pairs of fatty acids of 14, 16, or 18 carbons, exhibit inhibition of surfactant secretion that correlates extremely well with the phase transition temperature (Tc) of the phospholipid. The inhibitory activity of dipalmitoylphosphatidylcholine is not dependent upon lipid stereochemistry. N-Methylated derivatives of dipalmitoylphosphatidylethanolamine are significantly less effective than phosphatidylcholine as inhibitors. Phosphatidylcholines below their phase transition temperature are inhibitors of surfactant secretion, whereas those above their phase transition temperature are either ineffective or weakly inhibitory. The phase transition dependence of inhibition is observed when type II cells are incubated at 37 degrees C with different species of phosphatidylcholine. In addition, if type II cells are stimulated to secrete at different temperatures the efficacy of a given phospholipid as an inhibitor is dependent on its relationship to Tc (i.e. dipalmitoylphosphatidylcholine with a Tc of 41 degrees C significantly inhibits secretion at 37 degrees C but not at 42 degrees C). Inhibition of surfactant secretion by dipalmitoylphosphatidylcholine is abrogated when it is incorporated into the same liposome with dioleoylphosphatidylcholine as a 50:50 mixture. In contrast, the simultaneous addition of two separate populations of liposomes, one composed of dipalmitoylphosphatidylcholine and the other composed of dioleoylphosphatidylcholine, does not significantly alter the inhibitory activity found with dipalmitoylphosphatidylcholine alone. These data provide compelling evidence that the physical state of phosphatidylcholine can regulate surfactant secretion from alveolar type II cells and suggest a unique mechanism for regulating exocytosis in the alveolus of the lung.  相似文献   

13.
Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes.  相似文献   

14.
1. The thermal behaviour of sheep, rat and rabbit pulmonary surfactant lipids was investigated using high sensitivity differential scanning calorimetry (DSC). 2. Phase transitions were evident in the surfactant lipids from all three animals, with the upper limit of the phase transition being 30.1 C in the sheep, 36.8 C in the rat and 36.3 C in the rabbit. 3. The relatively greater fluidity of the sheep surfactant lipids in comparison to those of the rat and rabbit was due primarily to differences in their palmitic acid content.  相似文献   

15.
The small microchiropteran bat, Chalinolobus gouldii, undergoes large daily fluctuations in metabolic rate, body temperature, and breathing pattern. These alterations are accompanied by changes in surfactant composition, predominantly an increase in cholesterol relative to phospholipid during torpor. Furthermore, the surface activity changes, such that the surfactant functions most effectively at that temperature which matches the animal's activity state. Here, we examine the surface activity of surfactant from bats during arousal from torpor. Bats were housed at 24 degrees C on an 8:16h light:dark cycle and their surfactant was collected during arousal (28相似文献   

16.
The properties of natural bovine surfactant and its lipid extract have been examined with a pulsating bubble surfactometer which assesses the ability of surfactant lipids to adsorb to the air/liquid interface and reduce the surface tension to near 0 dynes/cm during dynamic compression. Studies conducted at 1 mg/ml phospholipid revealed that the surface activity (i.e., the ability to produce low surface tensions) of lipid extracts could be enhanced by incubating the sample at 37 degrees C for 120 min or by addition of CaCl2. In contrast, incubation at 37 degrees C only slightly improved the biophysical activity of natural surfactant and the addition of CaCl2 had a more modest effect than with lipid extracts. With 20 mM CaCl2, the surfactant activity of lipid extract surfactant was similar to that of natural surfactant. Incubation with EDTA reduced the biophysical activity of natural surfactant. Experiments in which increasing amounts of lipid extract were replaced by natural surfactant revealed that small amounts of natural surfactant enhanced the surfactant activity of lipid extract. The biophysical activity of lipid extract surfactant was also increased by the addition of soluble surfactant-associated protein-A (SP-A) (28-36 kDa) purified from natural bovine surfactant. These results indicate that SP-A (28-36 kDa) improves the surfactant activity of lipid extracts by enhancing the rate of adsorption and/or spreading of phospholipid at the air/liquid interface resulting in the formation of a stable lipid monolayer at lower bulk concentrations of either phospholipid or calcium.  相似文献   

17.
Pharmacy-grade exogenous lung surfactant preparations of bovine and porcine origin, dispersed in physiological electrolyte solution have been studied. The organization and dynamics at the air/water interface at physiological temperature was analysed by neutron reflection. The results show that a well-defined surface phase is formed, consisting of a multilayer structure of lipid/protein bilayers alternating with aqueous layers, with a repetition period of about 70 Å and correlation depths of 3 to > 25 bilayers, depending on electrolyte composition and time. The experimental surfactant concentration of 0.15% (w/w) is far below that used in therapeutic application of exogenous surfactants and it is therefore likely that similar multilayer structures are also formed at the alveolar surface in the clinical situation during surfactant substitution therapy. Lung surfactant preparations in dry form swell in aqueous solution towards a limit of about 60% (w/w) of water, forming a lamellar liquid-crystalline phase above about 34 °C, which disperses into lamellar bodies at higher water concentrations. The lamellar spacings in the surface multilayers at the air/water interface are smaller than those in the saturated limit even though they are in contact with much greater water concentrations. The surface multilayers are laterally disordered in a way that is consistent with fragments of Lα-phase lamellae. The near surface layers of the multilayer structure have a significant protein content (only SP-B and SP-C are present in the preparations). The results demonstrate that a multilayer structure can be formed in exogenous surfactant even at very low concentrations and indicate that multilayers need to be incorporated into present interpretations of in vitro studies of similar lung surfactant preparations, which are largely based on monolayer models.  相似文献   

18.
We studied the interaction between an apolipoprotein of pulmonary surfactant and the principal lipid found in this material, dipalmitoyl phosphatidylcholine. The apolipoprotein was extracted from canine surfactant and purified to greater than 90% homogeneity. The apolipoprotein was mixed for 16 h at room temperature with dipalmitoyl phosphatidylcholine dispersed in a buffer containing 0.1 M NaCl and 3mM CaCl2. Unbound lipid, unbound protein, and recombinants of lipid and protein were separated by density gradient centrifugation. 71% of the apolipoprotein was found associated with dipalmitoyl phosphatidylcholine. In comparable experiments using bovine plasma albumin about 13% of the albumin was recovered with the lipid. The physicochemical state of the lipid in the apolipoprotein-lipid complex was modified after binding of the protein. A distinct phase transition at 42 degrees C could no longer be detected, and the rate of adsorption to an air-liquid interface of the apolipoprotein-lipid complex was greater than that of the lipid alone. Surface tension vs. surface area isotherms of the dipalmitoyl phosphatidylcholine-apolipoprotein materials, however, were similar to those exhibited by pure dipalmitoyl phosphatidylcholine. The results suggest a physiological role for this apolipoprotein. It may bind to dipalmitoyl phosphatidylcholine under conditions expected in vivo, and may modify the physical properties of the aggregated dipalmitoyl phosphatidylcholine to form domains of lipid in a liquid-crystalline array. The complex dipalmitoyl phosphatidylcholine and apolipoprotein would have the physical properties necessary for its physiological function, allowing it to absorb to the alveolar interface and reduce its surface tension to less than 10 dynes/cm. Dipalmitoyl phosphatidylcholine, by itself, is in a gel-crystalline array below its phase transition temperature (42 degrees C) and would be incapable of effecting these actions.  相似文献   

19.
The outermost layer of skin, stratum corneum (SC), functions as the major barrier to diffusion. SC has the architecture of dead keratin filled cells embedded in a lipid matrix. This work presents a detailed study of the hydration process in extracted SC lipids, isolated corneocytes and intact SC. Using isothermal sorption microcalorimetry and relaxation and wideline (1)H NMR, we study these systems at varying degrees of hydration/relative humidities (RH) at 25 degrees C. The basic findings are (i) there is a substantial swelling both of SC lipids, the corneocytes and the intact SC at high RH. At low RHs corneocytes take up more water than SC lipids do, while at high RHs swelling of SC lipids is more pronounced than that of corneocytes. (ii) Lipids in a fluid state are present in both extracted SC lipids and in the intact SC. (iii) The fraction of fluid lipids is lower at 1.4% water content than at 15% but remains virtually constant as the water content is further increased. (iv) Three exothermic phase transitions are detected in the SC lipids at RH=91-94%, and we speculate that the lipid re-organization is responsible for the hydration-induced variations in SC permeability. (v) The hydration causes swelling in the corneocytes, while it does not affect the mobility of solid components (keratin filaments).  相似文献   

20.
A combination of differential scanning calorimetry (DSC) and X-ray diffraction have been used to study the kinetics of formation and the structure of the low-temperature phase of 1-stearoyl-lysophosphatidylcholine (18:0-lysoPC). For water contents greater than 40 weight %, DSC shows a sharp endothermic transition at 27 degrees C (delta H = 6.75 kcal/mol) corresponding to a low-temperature phase----micelle transition. This sharp transition is not reversible, but is regenerated in a time and temperature-dependent manner. For example, with incubation at 0 degrees C the maximum transition enthalpy (delta H = 6.75 kcal/mol) is generated in about 45 min after an initial slow nucleation process of approx. 20 min. The kinetics of formation of the low-temperature phase is accelerated at lower temperatures and may be related to the disruption of 18:0-lysoPC micelles by ice crystal formation. X-ray diffraction patterns of 18:0-lysoPC recorded at 10 degrees C over the hydration range 20-80% are characteristic of a lamellar gel phase with tilted hydrocarbon chains with the bilayer repeat distance increasing from 47.6 A at 20% hydration to a maximum of 59.4 A at 39% hydration. At this maximum hydration, approx. 19 molecules of water are bound per molecule of 18:0-lysoPC. Electron density profiles show a phosphate-phosphate distance of 30 A, indicating an interdigitated lamellar gel phase for 18:0-lysoPC at all hydration values. The angle of chain tilt is calculated to be between 20 and 30 degrees. For water contents greater than 40%, this interdigitated lamellar phase converts to the micellar phase at 27 degrees C in a kinetically fast process, while the reverse (micelle----interdigitated bilayer) transition is a kinetically slower process (see also Wu, W. and Huang, C. (1983) Biochemistry 22, 5068-5073).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号