首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enhancer trap approach utilizing transposons yields us information about gene functions and gene expression patterns. In the ascidian Ciona intestinalis, transposon-based transgenesis and insertional mutagenesis were achieved with a Tc1/mariner transposon Minos. We report development of a novel technique for enhancer trap in C. intestinalis. This technique uses remobilization of Minos in the Ciona genome. A Minos vector for enhancer trap was constructed and a tandem array insertion of the vector was introduced into the Ciona genome to create a mutator line. Minos was remobilized in Ciona chromosomes to create new insertions by providing transposases. These transposase-introduced animals were crossed with wild-type animals. Nearly 80% of F1 families showed novel GFP expression patterns. This high-throughput enhancer trap screen will be useful to create new marker transgenic lines showing reporter gene expression in specific tissues and to identify novel patterns of gene expression.  相似文献   

2.
3.
4.
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.  相似文献   

5.
6.
Aquaporin 1 (Aqp1) is a water channel protein, expressed widely in microvascular endothelial cells and implicated in mammalian tumor angiogenesis. However, its developmental expression has not yet been characterized in great detail. An enhancer trap screen was performed using a Tol2-derived GFP reporter in zebrafish embryos. An insertional Et(GBT-B1)tpl1 line was identified that has reporter insertion in the vicinity of the aqp1a gene. We further characterized the embryonic expression pattern of this GFP reporter line, as well as that of endogenous aqp1a. Both endogenous aqp1a and reporter GFP expression were restricted to the vascular endothelial cells within the dorsal aorta, cranial, intersegmental and other secondary vessels, but were absent in the axial venous vasculature. In addition, endogenous aqp1a expression was observed in both primitive and definitive hematopoietic erythroid progenitors, as well as in the otic vesicle, swim bladder, pneumatic duct, intestine and a subset of neurons within the retina and the midbrain-hindbrain region. We further show that gata1 and etsrp/etv2 function is required for hematopoietic and endothelial aqp1a expression, respectively. Aqp1a expression is restricted to endothelial and erythroid cells during early embryogenesis. The transgenic Et(GBT-B1)tpl1 line recapitulates endogenous endothelial aqp1a expression. Because currently very few reporter lines can differentiate between arterial and venous endothelial cells, the Et(GBT-B1)tpl1 transgenic line and characterization of the aqp1a expression pattern will be useful for future studies of endothelial and arterial-venous differentiation.  相似文献   

7.
An ascidian, Ciona savignyi, is regarded as a good experimental animal for genetics because of its small and compact genome for which a draft sequence is available, its short generation time and its interesting phylogenic position. ENU-based mutagenesis has been carried out using this animal. However, insertional mutagenesis using transposable elements (transposons) has not yet been introduced. Recently, one of the Tc1/mariner superfamily transposons, Minos, was demonstrated to cause germline transgenesis in the related species Ciona intestinalis. In this report, we show that Minos has the ability to transpose from DNA to DNA in Ciona savignyi in transposition assays. Although the activity was slightly weaker than in Ciona intestinalis, Minos still caused germline transgenesis in Ciona savignyi. In addition, one insertion seemed to have caused an enhancer trapping. These results indicate that Minos provides a potential tool for transgenic techniques such as insertional mutagenesis in Ciona savignyi.  相似文献   

8.
9.
Caenorhabditis elegans contains a set of six cluster-type homeobox (Hox) genes that are required during larval development. Some of them, but unlike in flies not all of them, are also required during embryogenesis. It has been suggested that the control of the embryonic expression of the worm Hox genes might differ from that of other species by being regulated in a lineal rather than a regional mode. Here, we present a trans-species analysis of the cis-regulatory region of ceh-13, the worm ortholog of the Drosophila labial and the vertebrate Hox1 genes, and find that the molecular mechanisms that regulate its expression may be similar to what has been found in species that follow a regulative, non-cell-autonomous mode of development. We have identified two enhancer fragments that are involved in different aspects of the embryonic ceh-13 expression pattern. We show that important features of comma-stage expression depend on an autoregulatory input that requires ceh-13 and ceh-20 functions. Our data show that the molecular nature of Hox1 class gene autoregulation has been conserved between worms, flies, and vertebrates. The second regulatory sequence is sufficient to drive correct early embryonic expression of ceh-13. Interestingly, this enhancer fragment acts as a response element of the Wnt/WG signaling pathway in Drosophila embryos.  相似文献   

10.
We performed both intra- and interspecific comparisons of the Otx gene in the sea urchin to investigate DNA variations within the enhancer elements. Intraspecific comparisons within Hemicentrotus pulcherrimus showed that indel variations were rare within the Otx enhancer, whereas SNP variations were found uniformly within the whole test region. A similar pattern of DNA variation was observed in comparisons between closely related species. On the other hand, both nucleotide substitution and indel variations were at high levels between distant species. Additionally, the regions corresponding to the Otx enhancer in two related species showed substantial activities during development. Our results suggest the possibility that a stabilizing selection has occurred during the evolution of the Otx gene enhancer in the sea urchin that maintains its expression pattern.  相似文献   

11.
Alterations in Hox gene expression patterns have been implicated in both large and small-scale morphological evolution. An improved understanding of these changes requires a detailed understanding of Hox gene cis-regulatory function and evolution. cis-regulatory evolution of the Hox gene Ultrabithorax (Ubx) has been shown to contribute to evolution of trichome patterns on the posterior second femur (T2p) of Drosophila species. As a step toward determining how this function of Ubx has evolved, we performed a series of experiments to clarify the role of Ubx in patterning femurs and to identify the cis-regulatory regions of Ubx that drive expression in T2p. We first performed clonal analysis to further define Ubx function in patterning bristle and trichome patterns in the legs. We found that low levels of Ubx expression are sufficient to repress an eighth bristle row on the posterior second and third femurs, whereas higher levels of expression are required to promote the development and migration of other bristles on the third femur and to repress trichomes. We then tested the hypothesis that the evolutionary difference in T2p trichome patterns due to Ubx was caused by a change in the global cis-regulation of Ubx expression. We found no evidence to support this view, suggesting that the evolved difference in Ubx function reflects evolution of a leg-specific enhancer. We then searched for the regulatory regions of the Ubx locus that drive expression in the second and third femur by assaying all existing regulatory mutations of the Ubx locus and new deficiencies in the large intron of Ubx that we generated by P-element-induced male recombination. We found that two enhancer regions previously known to regulate Ubx expression in the legs, abx and pbx, are required for Ubx expression in the third femur, but that they do not contribute to pupal expression of Ubx in the second femur. This analysis allowed us to rule out at least 100 kb of DNA in and around the Ubx locus as containing a T2p-specific enhancer. We then surveyed an additional approximately 30 kb using enhancer constructs. None of these enhancer constructs produced an expression pattern similar to Ubx expression in T2p. Thus, after surveying over 95% of the Ubx locus, we have not been able to localize a T2p-specific enhancer. While the enhancer could reside within the small regions we have not surveyed, it is also possible that the enhancer is structurally complex and/or acts only within its native genomic context.  相似文献   

12.
13.
Achievement of transposon mediated germline transgenesis in a basal chordate, Ciona intestinalis, is discussed. A Tc1/mariner superfamily transposon, Minos, has excision and transposition activities in Ciona. Minos enables the creation of stable transgenic lines, enhancer detection, and insertional mutagenesis.  相似文献   

14.
15.
16.
Recent whole-genome studies and in-depth expressed sequence tag (EST) analyses have identified most of the developmentally relevant genes in the urochordate, Ciona intestinalis. In this study, we made use of a large-scale oligo-DNA microarray to further investigate and identify genes with specific or correlated expression profiles, and we report global gene expression profiles for about 66% of all the C. intestinalis genes that are expressed during its life cycle. We succeeded in categorizing the data set into 5 large clusters and 49 sub-clusters based on the expression profile of each gene. This revealed the higher order of gene expression profiles during the developmental and aging stages. Furthermore, a combined analysis of microarray data with the EST database revealed the gene groups that were expressed at a specific stage or in a specific organ of the adult. This study provides insights into the complex structure of ascidian gene expression, identifies co-expressed gene groups and marker genes and makes predictions for the biological roles of many uncharacterized genes. This large-scale oligo-DNA microarray for C. intestinalis should facilitate the understanding of global gene expression and gene networks during the development and aging of a basal chordate.  相似文献   

17.
18.
An enhancer trap (ET) mediated by a transposon is an effective method for functional gene research. Here, an ET system based on a PB transposon that carries a mini Krt4 promoter (the keratin4 minimal promoter from zebrafish) and the green fluorescent protein gene (GFP) has been used to produce zebrafish ET lines. One enhancer trap line with eye-specific expression GFP named EYE was used to identify the trapped enhancers and genes. Firstly, GFP showed a temporal and spatial expression pattern with whole-embryo expression at 6, 12, and 24 hpf stages and eye-specific expression from 2 to 7 dpf. Then, the genome insertion sites were detected by splinkerette PCR (spPCR). The Krt4-GFP was inserted into the fourth intron of the gene itgav (integrin, alpha V) in chromosome 9 of the zebrafish genome, with the GFP direction the same as that of the itgav gene. By the alignment of homologous gene sequences in different species, three predicted endogenous enhancers were obtained. The trapped endogenous gene itgav, whose overexpression is related to hepatocellular carcinoma, showed a similar expression pattern as GFP detected by in situ hybridization, which suggested that GFP and itgav were possibly regulated by the same enhancers. In short, the zebrafish enhancer trap lines generated by the PB transposon-mediated enhancer trap technology in this study were valuable resources as visual markers to study the regulators and genes. This work provides an efficient method to identify and isolate tissue-specific enhancer sequences.  相似文献   

19.
20.
Wen L  Wei W  Gu W  Huang P  Ren X  Zhang Z  Zhu Z  Lin S  Zhang B 《Developmental biology》2008,314(1):84-92
We describe an enhancer trap transgenic zebrafish line, ETvmat2:GFP, in which most monoaminergic neurons are labeled by green fluorescent protein (GFP) during embryonic development. The reporter gene of ETvmat2:GFP was inserted into the second intron of vesicular monoamine transporter 2 (vmat2) gene, and the GFP expression pattern recapitulates that of the vmat2 gene. The GFP positive neurons include the large and pear-shaped tyrosine hydroxylase positive neurons (TH populations 2 and 4) in the posterior tuberculum of ventral diencephalon (PT neurons), which are thought to be equivalent to the midbrain dopamine neurons in mammals. We found that these PT neurons and two other GFP labeled non-TH type neuronal groups, one in the paraventricular organ of the posterior tuberculum and the other in the hypothalamus, were significantly reduced after exposure to MPTP, while the rest of GFP-positive neuronal clusters, including those in telencephalon, pretectum, raphe nuclei and locus coeruleus, remain largely unchanged. Furthermore, we showed that the effects of hedgehog signaling pathway inhibition on the development of monoaminergic neurons can be easily visualized in individual living ETvmat2:GFP embryos. This enhancer trap line should be useful for genetic and pharmacological analyses of monoaminergic neuron development and processes underlying Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号