首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA of bacteriophage T3 was characterized by cleavage with seven restriction endonucleases. AvaI, XbaI, BglII, and HindIII each cut T3 DNA at 1 site, KpnI cleaved it at 2 sites, MboI cleaved it at 9 sites, and HpaI cleaved it at 17 sites. The sizes of the fragments produced by digestion with these enzymes were determined by using restriction fragments of T7 DNA as molecular weight standards. As a result of this analysis, the size of T3 DNA was estimated to be 38.74 kilobases. The fragments were ordered with respect to each other and to the genetic map to produce a restriction map of T3 DNA. The location and occurrence of the restriction sites in T3 DNA are compared with those in the DNA of the closely related bacteriophage T7.  相似文献   

2.
A physical map of the genome of temperate phage phi 3T.   总被引:7,自引:0,他引:7  
J M Cregg  J Ito 《Gene》1979,6(3):199-219
A physical map of the genome of Bacillus subtilis bacteriophage phi 3T was constructed by ordering the fragments produced by cleavage of phi 3T DNA with restriction endonucleases AvaII (2 fragments), BglI (2 fragments), SmaI (3 fragments), BamHI (6 fragments), SalI (7 fragments), AvaI (7 fragments), SacI (12 fragments), PstI (14 fragments), and BglII (26 fragments). Two techniques were used to order the fragments: (1) Sets of previously ordered restriction fragments were isolated and redigested with the endonuclease whose cleavage sites were to be mapped. (2) Fragments located near the ends of the genome or near the ends of other restriction fragments were ordered by treating the DNA with lambda exonuclease prior to restriction endonuclease cleavage. The susceptibility of phi 3T DNA to 15 other restriction endonucleases is also reported.  相似文献   

3.
P Sarkar  S Adhya  P Musich  U Maitra 《Gene》1980,12(1-2):161-163
A restriction endonuclease cleavage map of bacteriophage T3 DNA has been constructed. The enzymes used and, within parentheses, the number of their cleavage sites on T3 DNA are: HindIII (1), XbaI (1), BglII (1), KpnI (2), MboI (9), and HpaI (17). The size and the relative location of each fragment have been established, defining an accurate physical map of T3 DNA.  相似文献   

4.
Biological functions of the bacteriophage T3 SAMase gene.   总被引:5,自引:2,他引:3       下载免费PDF全文
Certain differences between phage T3 on the one hand and T3sam- and T7 on the other hand indicate that the T3-coded SAMase function is responsible (i) for the development of the pseudolysogenic state by preventing T3 DNA methylation, and (ii) for the partial protection of the phage DNA against restriction by the P system.  相似文献   

5.
Summary The bacteriophages T3 and T7 are not modified and restricted byE. coli strains with different host specificity (E. coli B, K, O) in vivo. The phages code for a gene product with the ability toovercomeclassicalrestriction (ocr):ocr mutants are subject to modification and restriction via DNA methylation vs cleavage. The T3 genome possesses recognition sites for the restriction endonuclease R.EcoB which, unless the DNA is B-specifically modified, trigger 5–7 DNA cleavages. Theocr gene function of T3 and T7 is located within the gene 0.3 region of these phages and is not identical with thesam (SAMase) function of T3. The mechanisms ofocr protection remains unclear, while it is certain that this protection by the gene 0.3 protein is exerted in the infected cell and not through over-all modification in the preceding growth cycle of the phage.  相似文献   

6.
Summary The host controlled modifications of phage -DNA byEscherichia coli B, K, and C (P1) can be suppressed by preinfecting the bacteria with UV-irradiated phage T3. Since UV-irradiated T3 induces an enzyme which cleaves S-adenosylmethionine into homoserine and thiomethyl adenosine, and since S-adenosylmethionine is the only methyl group donor for DNA methylation, we conclude that methylation is a required step in the host controlled modification of -DNA.T3 itself successfully infectsE. coli K and B with its nonmethylated DNA. Also, restricted phage or T1 will be accepted by the restrictive hostsE. coli B, K, and C(P1) if these are preinfected with UV-T3. It thus appears that T3 is capable of blocking the restriction mechanisms in these hosts.The inability of T3 to grow on C(P1) is not understood. Since T3-DNA is restricted but not degraded into nucleotides byE. coli C(P1) we presume that degradation is not the initial step in restriction.Supported by Grant No. GB 1033 R of the National Science Foundation.Postdoctoral fellow of the Deutsche Forschungsgemeinschaft.  相似文献   

7.
Infection of Escherichia coli with bacteriophage T7 results in the formation of an endonuclease which is selectively associated with the T7 DNA-membrane complex. A specificity of association with the complex is indicated by the finding that the enzyme is completely resolved from a previously described T7 endonuclease I. When membrane complexes containing (3)H-labeled in vivo synthesized DNA are incubated in the standard reaction mixture a specific cleavage product is formed which is about one-fourth the size of T7 DNA. The endonuclease associated with the complex produces a similar cleavage product after extensive incubation with native T7 DNA or T7 concatemers. Degradation of concatemers occurs by a mechanism in which the DNA is converted to molecules one-half the size of T7. This product is in turn converted to fragments one-fourth the size of mature phage DNA. The endonuclease is not present in membrane complexes from uninfected cells or cells infected with gene 1 mutants. The enzyme activity is, however, present in cells infected with mutants defective in T7 DNA synthesis or maturation.  相似文献   

8.
A new physical method was developed to assay genetic recombination of phage T7 in vivo. The assay utilized T7 mutants that carry unique restriction sites and was based on the detection of a new restriction fragment generated by recombination. Using this assay, we reexamined the genetic requirements for recombination of T7 DNA. Our results were in total agreement with previous findings in that recombination required the products of genes 3 (endonuclease), 4 (primase), 5 (DNA polymerase), and 6 (exonuclease). Recombination was found to be independent of DNA ligase and DNA packaging and maturation functions.  相似文献   

9.
10.
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs.  相似文献   

11.
12.
The nucleotide sequence recognized and cleaved by the restriction endonuclease MboI is 5' GATC and is identical to the central tetranucleotide of the restriction sites of BamHI and BglII. Experiments on the restriction of DNA from Escherichia coli dam and dam+ confirm the notion that GATC sequences are adenosyl-methylated by the dam function of E. coli and thereby are made refractory to cleavage by MboI. On the basis of this observation the degree of dam methylation of various DNAs was examined by cleavage with MboI and other restriction endonucleases. In plasmid DNA essentially all of the GATC sequences are methylated by the dam function. The DNA of phage lambda is only partially methylated, extended methylation is observed in the DNA of a substitution mutant of lambda, lambda gal8bio256, and in the lambda derived plasmid, lambdadv93, which is completely methylated. In contrast, phage T7 DNA is not methylated by dam. A suppression of dam methylation of T7 DNA appears to act only in cis dam. A suppression of dam methylation of T7 DNA appears to act only in cis since plasmid DNA replicated in a T7-infected cell is completely methylated. The results are discussed with respect to the participation of the dam methylase in different replication systems.  相似文献   

13.
Summary The ocr + gene function (gp 0.3) of bacteriophages T3 and T7 not only counteracts type I (EcoB, EcoK) but also type III restriction endonucleases (EcoP1). Despite the presence of recognition sites, phage DNA as well as simultaneously introduced plasmid DNA are protected by ocr + expression against both the endonucleolytic and the methylating activities of the EcoP1 enzyme. Nevertheless, the EcoP1 protein causes the exclusion of T3 and T7 in P1-lysogenic cells, apparently by exerting a repressor-like effect on phage gene expression. T3 which induces an S-adenosylmethionine hydrolase is less susceptible to the repressor effect of the SAM-stimulated EcoP1 enzyme. The abundance of EcoP1 recognition sites in the T7 genome is explained by their near identity with the T7 DNA primase recognition site.Abbreviations d.p.m. decompositions per min - EcoB, EcoK, EcoP1, EcoP15, EcoRII, EcoR124, HinfIII restriction endonucleases coded by Escherichia coli strains B or K, E. coli plasmids P1, P15, RII or R124, and Haemophilus influenzae Rf 232, resp. - e.o.p. efficiency of plating - gp gene product (in the sense of protein) - m.o.i. multiplicity of infection (phage/cell) - ocr + gene function which overcomes classical restriction - p.f.u. plaque-forming units - SAM S-adenosylmethionine - sam + gene function with S-adenosylmethionine-cleaving enzyme (SAMase) activity - UV ultraviolet light Dedicated to Professor Konstantin Spies on the occasion of his sixtieth birthday  相似文献   

14.
A physical map of the bacteriophage T5 genome was constructed by ordering the fragments produced by cleavage of T5 DNA with the restriction endonucleases SalI (4 fragments), SmaI (4 fragments), BamI (5 fragments), and HpaI (28 fragments). The following techniques were used to order the fragments. (i) Digestion of DNA from T5 heat-stable deletion mutants was used to identify fragments located in the deletable region. (ii) Fragments near the ends of the T5 DNA molecule were located by treating T5 DNA with lambda exonuclease before restriction endonuclease cleavage. (iii) Fragments spanning other restriction endonuclease cleavage sites were identified by combined digestion of T5 DNA with two restriction endonucleases. (iv) The general location of some fragments was determined by isolating individual restriction fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. (v) Treatment of restriction digests with lambda exonuclease before digestion with a second restriction enzyme was used to identify fragments near, but not spanning, restriction cleavage sites. (vi) Exonucleases III treatment of T5 DNA before restriction endonuclease cleavage was used to locate fragments spanning or near the natural T5 single-chain interruptions. (vii) Analysis of the products of incomplete restriction endonuclease cleavage was used to identify adjacent fragments.  相似文献   

15.
Deletion and point mutants of T3 have been isolated and used to show that the early region of T3 DNA is organized in the same way as that of T7 DNA. Homologous early RNAs and proteins of the two phages have been identified by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Both phages have five early mRNA's, numbered 0.3, 0.7, 1,1.1 and 1.3 from left to right, although no T3 protein that corresponds to the 1.1 protein of T7 has yet been identified. In general, corresponding early RNAs and proteins of the two phages migrate differently on gels, indicating that they differ in molecular weight and/or conformation. In both T7 and T3, gene 0.3 is responsible for overcoming the DNA restriction system of the host, gene 0.7 specifies a protein kinase, gene 1 specifies a phage-specific RNA polymerase, and gene 1.3 specifies a polynucleotide ligase. The 0.3 protein of T3 is responsible for the S-adenosylmethionine cleaving activity (SAMase) induced after T3 (but not T7) infection. However, cleaving of S-adenosylmethionine does not appear to be the primary mechanism by which T3 overcomes host restriction, since at least one mutant of T3 has lost the SAMase activity without losing the ability to overcome host restriction.  相似文献   

16.
Phage T7 DNA polymerase consists of a strong 1:1 complex of T7 gene 5 protein (80 kDa) and the reduced form of Escherichia coli thioredoxin (12 kDa). Immobilization of E. coli thioredoxin on the agarose matrix Affi-Gel retained both its redox activity and its ability to bind T7 gene 5 protein. This was used to develop a simple and fast high-yield purification method. Cloned T7 gene 5 protein, expressed in a thioredoxin-negative host cell, was isolated in pure and highly active form after elution from Affi-Gel--thioredoxin with a pH gradient from 10 to 12. This purification step separated gene 5 protein from variable amounts of two sets of reconstituting large polypeptide fragments without catalytic activity. Proteolytic cleavage in vivo probably gave rise to the fragments, the generation of which was mimicked by trypsin cleavage of pure gene 5 protein. The gene 5 protein preparation had an inherent low DNA polymerase and double-stranded 3'-exonuclease activity, which was stimulated at least 30-fold by the presence of reduced thioredoxin. Highly active and pure T7 DNA polymerase was obtained by reconstitution of gene 5 protein with thioredoxin and was isolated by phosphocellulose or FPLC Mono Q chromatography. The gene 5 protein and T7 DNA polymerase preparations are suitable for further physicochemical characterization and as reagents in DNA sequencing.  相似文献   

17.
During the infection of Escherichia coli by bacteriophage T7, there is a gradual conversion of host DNA to T7 DNA. Recombination and replication occur during this time. We have devised a new way of examining the physical structures of the intermediates of these processes. It is based on the observation that there are no sites in T7 DNA susceptible to cleavage by the restriction endonuclease EcoRI. E. coli DNA, on the other hand, is susceptible to degradation by EcoRI. Thus, phage and host DNA can be separated by sucrose gradient centrifugation after treatment with EcoRI. Concatemeric T7 DNA contains a high proportion of branched, gapped, and whiskered structures. These appear to be intermediates of replication and recombination. This approach also monitors the conversion process from host to T7 DNA.  相似文献   

18.
Neither bacteriophage T5+ nor its EcoRI-sensitive ris mutants became modified during growth on an EcoRI-modifying host. For this reason, the rare ris plaques able to grow on the EcoRI-modifying host were always due to revertant phage rather than to modified ris mutants. The ris mutations resulted in the creation of new EcoRI cleavage sites in the terminally repetitious first-step transfer DNA, and analysis of T5 ris revertants showed loss of these sites and restoration of the wild-type restriction pattern. Natural EcoRI sites present in the second-step transfer DNA were never lost in T5ris revertants, indicating that these are irrelevant to in vivo restriction and are protected during growth on the restricting host.  相似文献   

19.
This paper describes the construction of a DNA molecule containing a topologically stable structure that simulates a replication fork. This preformed DNA molecule is a circular duplex of 7.2 X 10(3) base pairs (M13mp6 DNA) from which arises, at a unique BamHI recognition site, a noncomplementary 5'-phosphoryl-terminated single strand of 237 nucleotides (SV40 DNA). This structure has two experimental attributes. 1) Templates for both leading and lagging strand synthesis exist as stable structures prior to any DNA synthesis. 2) DNA synthesis creates a cleavage site for the restriction endonuclease BamHI. Form I of T7 DNA polymerase, alone, catalyzes limited DNA synthesis at the preformed replication fork whereas Form II, alone, polymerizes less than 5 nucleotides. However, when T7 gene 4 protein is present, Form II of T7 DNA polymerase catalyzes rapid and extensive synthesis via a rolling circle mode. Kinetic analysis of this synthesis reveals that the fork moves at a rate of 300 bases/s at 30 degrees C. We conclude that the T7 gene 4 protein requires a single-stranded DNA binding site from which point it translocates to the replication fork where it functions as a helicase. The phage T4 DNA polymerase catalyzes DNA synthesis at this preformed replication fork in the presence of gene 4 protein, but the amount of DNA synthesized is less that 3% of the amount synthesized by the combination of Form II of T7 DNA polymerase and gene 4 protein. We conclude that T7 DNA polymerase and T7 gene 4 protein interact specifically during DNA synthesis at a replication fork.  相似文献   

20.
DNA of Escherichia coli virus T1 is resistant to MboI cleavage and appears to be heavily methylated. Analysis of methylation by the isoschizomeric restriction enzymes Sau3AI and DpnI revealed that recognition sites for E. coli DNA adenine methylase (dam methylase) are methylated. The same methylation pattern was found for virus T1 DNA grown on an E. coli dam host, indicating a T1-specific DNA methyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号