首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fermentation characteristics of recombinant Saccharomyces cerevisiae containing a xylose reductase gene from Pichia stipitis were investigated in an attempt to convert xylose to xylitol, a natural five-carbon sugar alcohol used as a sweetener. Xylitol was produced with a maximum yield of 0.95 g g−1 xylitol xylose consumed in the presence of glucose used as a co-substrate for co-factor regeneration. Addition of glucose caused inhibition of xylose transport and accumulation of ethanol. Such problems were solved by adopting glucose-limited fed-batch fermentations where a high ratio of xylose to glucose was maintained during the bioconversion phase. The optimized two-substrate fed-batch fermentation carried out with S. cerevisiae EH13.15:pY2XR at 30°C resulted in 105.2 g l−1 xylitol concentration with 1.69 g l−1 h−1 productivity.  相似文献   

2.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

3.
1. 1. The thermal characteristics of Petrodromus tetradactylus, Elephantulus intufi and E. brachyrhynchus were investigated and compared with other elephant-shrews that occur in the southern African subregion.
2. 2. E. intufi and E. brachyrhynchus appear to have lower than expected basal metabolic rates (1.1185 ± 0.1623 and 0.9649 ± 0.1638 ml O2 g−1 h−1, respectively) and high, narrow thermoneutral zones, similar to other elephant-shrews investigated previously. In contrast P. tetradactylus has a basal metabolic rate (0.871 ± 0.027 ml O2 g−1 h−1) close to expected for body mass, and a broad, low thermoneutral zone.
3. 3. The thermal biology of macroscelids is discussed in terms of their distribution, microhabitat and body size.
  相似文献   

4.
Continuous fermentations were performed in order to correlate the production of retamycin, an anthracycline antibiotic produced by Streptomyces olindensis in submerged cultures, with the dilution rate. Maximum retamycin production was achieved at a dilution rate of 0.05 h−1 (Dx=0.05 h−1), while higher dilution rates caused a decrease in antibiotic production, which ceased completely at a dilution rate of 0.30 h−1. Otherwise, biomass productivity was favoured by high dilution rates, achieving a maximum at D=0.25 h−1, whereas retamycin productivity reached a maximum at D=0.05 h−1. Dilution rate influenced morphology, which was assessed by image analysis. The percentage of clumps decreased with an increase in dilution rate, with a correspondent increase in pellet percentage.  相似文献   

5.
The growth of the freshwater microalga Scenedesmus obliquus was studied at 30°C in a mineral culture medium with phosphorus concentrations of between 0 and 372 μ . The values for the specific growth rates, between and , fitted a semistructured substrate-limitation model with μm1 = 0·0466 h−1, μm2 = 0·0256 h−1 and . The specific uptake rate of phosphorus reached a maximum value of qSm1 = 658·01 × 10−4 μmol P mg−1 biomass h−1.  相似文献   

6.
The titers of key enzymes of xylose metabolism were measured and correlated with the kinetics of xylitol production by Debaryomyces hansenii under different oxygen transfer rates (OTR) in a batch reactor. An OTR change from 2.72 to 4.22 mmol O2 l−1 min−1 resulted in a decrease in NADPH-dependent xylose reductase (XR) and NAD ± -dependent xylitol dehydrogenase (XDH) activities. For higher values of OTR (12.93 mmol O2 l−1 min−1, the XDH titer increased twofold whereas the XR titer did not show a significant change. At the lowest OTR (2.72 mmol O2 l−1 min−1), xylitol (and ethanol) production rates showed the highest values. However, xylitol specific productivity was twice as high as ethanol specific productivity. The titer of the NADPH-forming enzyme, glucose-6-phosphate dehydrogenase (GPDH), increased from 333 to 412 mU mg−1 when the OTR was increased. However, 6-phosphogluconate dehydrogenase (PGDH) activity remained unchanged and at a lower level, which indicates that this enzyme is responsible for the carbon flux control of the oxidative branch of the pentose phosphate pathway. The activity of the alcohol-forming enzyme was repressed at the higher amount of oxygen, decreasing its activity more than 50%. The changes in ADH suggested that two different metabolic regions under oxygen-limited conditions can be hypothesized for xylose metabolism by D. hansenii. For low OTR values (up to 4.22 mmol O2 l−1 min−1), a fermentative-type activity is displayed. At higher OTR values (above 4.22 mmol O2 l−1 min−1), no significant fermentative activity is reported.  相似文献   

7.
The effect of hexoses (glucose and galactose) addition to the feed xylose mineral medium of Debaryomyces hansenii chemostat cultures grown at a constant dilution rate of 0.055 h−1 was studied. Xylitol was the major product detected amongst all tested conditions. The maximal values for xylitol yield and volumetric productivity (0.56 gg−1 xylose and 0.21 gl−1h−1, respectively) were obtained for a glucose/xylose feeding ratio of 10%, showing that the addition of small amounts of glucose, but not galactose, enhanced the xylitol production. A xylitol yield increase of 30%, compared with the sole xylose-containing feed medium, was observed. It was found that the oxygen requirement for D. hansenii growth is lower under glucose compared with xylose. Ethanol and glycerol were only produced for glucose/xylose feeding ratio above 30%. The byproducts accumulation was correlated with glucose metabolism, because a direct relationship between the increase of ethanol (and glycerol) concentration and the increase of glucose in the feed medium was found.  相似文献   

8.

1. 1. The naked mole-rat (Heterocephalus glaber) is a poikilothermic mammal. During gestation metabolic shifts that differ from both mammalian and reptilian thermoregulatory patterns occurred.

2. 2. Body temperature was directly dependent on ambient temperature. At low ambient temperatures the temperature differential (TbTa) was approximately 3°C, whereas at higher ambient temperatures the temperature differential diminished.

3. 3. In early pregnancy (prior to week 3) oxygen consumption at low ambient temperatures was greater than that of non-reproductive animals. A maximal metabolic rate (3.2 ± 1.0 ml O2 . g−1 . h−1) occurred at an ambient temperature of 27°C. Thereafter the endothermic pattern of metabolism with increasing ambient temperatures was evident. Oxygen consumption decreased with increasing ambient temperature to minimal rates of 1.2 ± 0.1 ml O2 . g−1 . h−1 over the ambient temperature range of 31–34°C.

4. 4. Oxygen consumption in late pregnancy (1.8 ± 0.1 ml O2 . g−1 . h−1) was not correlated with ambient temperature over the entire ambient temperature range measured (24–36°C).

5. 5. Differences in thermoregulation in early and late pregnancy may be attributed to different rates of heat loss as a consequence of (a) changes in surface area and body mass or (b) vascular changes. Furthermore the thermoregulatory changes in late pregnancy may indicate that maximal overall metabolic capacity had been reached, for peak resting metabolism (expressed per animal rather than per gram body mass) in early pregnancy was similar to observed metabolism in late pregnancy.

6. 6. The dissociation of metabolism from both ambient temperature and body temperature in late pregnancy could confer an energetic advantage to this arid dwelling underground inhabitant; for it may enable the breeding female to partition a greater portion of available energy into reproduction.

Author Keywords: Body temperature; endothermy; eusocial; gestation; Heterocephalus glaber; metabolic changes; naked mole-rat; oxygen consumption; poikilothermy; pregnancy; rectal temperature; thermoregulation  相似文献   


9.
The glucose oxidase system was adapted for estimation of the overall oxygen transfer rate in a periodic pressure oscillating, solid-state bioreactor. Enzyme concentration of 40 ml enzyme preparation L−1 was found adequate to give linear gluconic acid production and attain maximal oxygen absorption rates. At 4 atm and 30°C, the oxygen transfer rate reached 892 mmol kg−1 initial dry matter h−1 in this system, while only 121 mmol kg−1 initial dry matter h−1 was obtained in a conventional static tray bioreactor.  相似文献   

10.
The effect of dilution rate on the production of lactic acid from whey permeate by Lactobacillus helveticus has been investigated. In the first chemostat of a two-stage system, total conversion (98.1%) and maximum lactic acid concentration (43.7 g l−1) were obtained at a dilution rate (DItot) of 0.06 h−1. Maximum volumetric productivities of lactic acid (8.27 g l−1 h−1) and biomass (1.90 g l−1 h−1) occurred at DItot of 0.40 h−1. The fraction of -lactate in the product was found to increase with dilution rate and reached a maximum of 66% at the same dilution rate. The maximum specific growth ratemax) on this medium was 0.7 h−1. A YATP (max) value of 22.4 g dry weight (mol ATP)−1 and a maintenance coefficient of 8.0 mmol ATP (g dry weight h)−1 were determined. The second stage, in series with the first, confirmed these results and further showed that the total residence time could be reduced by 50%, compared with a single chemostat for the same nearly complete level of substrate conversion.  相似文献   

11.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

12.

1. 1. The response of oxygen consumption (VO2), thermal conductance (Cd and Cmin, body temperature (Tb), and evaporative water loss (EWL) of Tatera leucogaster and Desmodillus auricularis were measured over the range of ambient temperatures (Ta) from 5–35°C.

2. 2. Basal metabolic rate (BMR) of T. leucogaster was 0.841 ± 0.049 ml O2 g−1 h−1 and lower than predicted, while that of D. auricularis was similar to the expected value (1.220 ± 0.058 ml O2 g−1 h−1). D. auricularis had a high, narrow thermoneutral zone (TNZ) typical of nocturnal, xerophilic, burrowing rodents.

3. 3. D. auricularis and T. leucogaster regulated Tb over the range Ta = 5–35°C and kept EWL and dry thermal conductance at a minimum below the TNZ. However, the EWL of T. leucogaster increased rapidly above Ta = 30°C.

4. 4. After comparison with data from other species, it was concluded that there is an optimum size for xeric, nocturnal, burrowing rodents.

Author Keywords: thermoregulation; BMR; gerbil  相似文献   


13.
Estimation of the ammonia production of the shrimp C. crangon in two littoral ecosystems (oligotrophic sand and eutrophic mud) was determined in winter and summer conditions from laboratory observations in experimental microcosms. The ammonia excretion rate of C. crangon was not influenced by either the sediment type or the ammonia concentration of the overlying water; on the other hand, the mean excretion rate and the response to initial handling stress increased markedly as shrimp were deprived of soft substratum.

The daily ammonia production of C. crangon was 16 μmol NH3 · g −1 wet wt · day −1 in winter and 40 μmol in summer. A gross production of 12 μmol NH3 · m−2 · day −1 and 300–700 μmol μ m−2 · day−1, respectively, could be expected in the two ecosystems studied. This would account for 5% (winter) and 2–4% (summer) of the total NH+4 flux at the sediment-water interface. The contribution of the excretion of all macrofauna to the NH+4 flux from the sediment is discussed.  相似文献   


14.

1. 1.|Body temperatures (Tb) and contaneous evaporative water loss rates (CWL) were measured in tree frogs (Hyla cinerea) and toads (Bufo valliceps) exposed to cyclical ramp changes in water vapor density (WVD) between 7.5 and 9.8 gm−3 (1 cycle h−1 at an air temperature of 27.0°C.

2. 2.|CWL was 3.3 times greater in toads than in tree frogs.

3. 3.|Tb in toads cycled directly with WVd; WVD accounted for 98% of the variation in toad Tb.

4. 4.|Tb in tree frogs was independent of WVD, probably due to changes in skin resistance to water loss.

Author Keywords: Body temperature; evaporative water loss; skin resistance; water vapor density; relative humidity; Anura; Hyla cinerea; Bufo valliceps  相似文献   


15.
Antimalarial properties of soy-bean fat emulsions   总被引:1,自引:0,他引:1  
Intralipid® and Ivelip® are commercial preparations of soy-bean lipid extracts used for intravenous supplementation of lipids in various clinical conditions. They were found to inhibit the growth of Plasmodium falciparum in culture with an IC50 of 8.07 ± 2.13 and 13.32 ± 2.05 mg.ml−1, respectively. Intralipid® rapidly and efficiently inhibited nucleic acid synthesis in cultured P. falciparum, exhibiting full inhibitory activity in less than 2 h. Ivelip® injected intraperitoneally, was found by the 4-day suppressive test to be active in vivo against P. vinckei petteri within the normal recommended regimen for dietary lipid supply (0.5–4 g.kg−1), but it was impossible to obtain a radical cure even with very high doses (6.4 g.kg−1). Ivelip® was less effective against P. berghei and P. yoelii nigeriensis. As Ivelip® showed no interference with the antimalarial activity of chloroquine, it could be considered for use in the treatment of severe human malaria in association with 4-aminoquinolines to expedite the clearance of parasites.  相似文献   

16.
In the present study, we have investigated the biotransformation of toluene to its cis-dihydrodiol (cis-diol) with immobilized Pseudomonas putida UV4 cells using different conditions of immobilization with a view to improving its production. The choice of alginate and its concentration for the immobilization of the cells were found to be the most important factors affecting the production of toluene cis-diol. The concentration of minerals and oxygen in the reaction medium and the methodology of substrate addition were investigated and the optimal conditions were defined. Once the optimal conditions for biotransformations and entrapment were determined, a packed-bed and fluidized-bed reactor were evaluated for the biotransformation process. The results using air as the gas supply showed an increase in the total production from 0.15 mol cis-diol · g−1 dry cell weight (dcw) in the packed-bed reactor to 0.28 mol cis-diol · g−1 dcw in the fluidized-bed reactor. When pure oxygen was used in place of air in the fluidized-bed reactor, a dramatic increase in total production up to a maximum of 6.1 mol cis-diol · g−1 dcw using a medium flow rate of 100 ml min−1 was achieved. Under optimal conditions, a maximum rate of production of 86.9 mmol cis-diol g−1 dcw h−1 was achieved for 48 h. This was seven times higher than the rate previously reported in the literature and for a much longer period of time; consequently, the overall production observed was more than 75 times higher than the values reported in the literature.  相似文献   

17.
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae.  相似文献   

18.
Culture (NAD(P)H) fluorescence dynamics have been used to provide information on culture behaviour when Xanthomonas campestris was grown in a bioreactor. Culture fluorescence decreased by 1150 units in response to an increase in extracellular pH from 3.1 to 7.6. A mathematical model incorporating the effect of pH on the bulk NADH depletion reaction simulated the experimental data. The rates of bulk NADH formation and depletion reactions were 1 s−1 and 719 (M h−1)−1 s−1, respectively. Subsequent to the initial NADH decrease, the culture fluorescence increased to within 200 units of its original value, with a concomitant decrease in oxygen uptake rate (OUR) from 7.3 to 3 mM h−1. A mathematical model incorporating the hypothesis that the culture manipulated its OUR to increase its NADH level, simulated the experimental data. In addition, it was inferred from culture fluorescence that the intracellular oxygen availability becomes insufficient at or below 10% extracellular dissolved oxygen value. Studies on H2O2 addition to X. campestris, to optimize the liquid-phase oxygen supply, showed no change in metabolic state, as indicated by NADH fluorescence, until 1.4 mmol H2O2 (g cell)−1 and a significant decrease above that. Investigations on the reasons for decreases in NADH fluorescence suggested a DNA-damaging Fenton reaction as the probable reason for the observed NADH decrease on addition of H2O2.  相似文献   

19.
Wang Jianlong   《Process Biochemistry》2000,35(10):1079-1083
Due to the significant oxygen requirement during citric acid production and the relatively low solubility of oxygen in water, aeration is critical. The potential use of n-dodecane as an oxygen-vector for improvement of citric acid production by Aspergillus niger was studied. The volumetric fraction of oxygen-vector has a great influence on the volumetric oxygen transfer coefficient kLa. With the addition of an oxygen-vector to the fermentation medium with a final concentration of 5%, the kLa value reached a maximum value (130 h−1), which is twice that of the control experiment. The addition of 5% (v/v) n-dodecane enhanced citric acid accumulation, reduced residual sugar concentration and stimulated mycelial growth. Adding n-dodecane had no adverse effects on the cells of A. niger. The results of enzyme assays indicated that no significant differences were observed between the activity of citrate synthase of two kinds of mycelial cell-free extracts.  相似文献   

20.
《植物生态学报》2017,41(10):1081
Aims Pinus massoniana is one of the major plantation tree species in the low hilly lands along the upper reaches of the Yangtze River Valley in China’s “Grain for Green” project. The objective of this study was to explore the edge effects of forest gap on the ecological stoichiometry of dominant tree species in a P. massoniana plantation forest.Methods We collected Cinnamomum longepaniculatum leaves in a 39-year-old P. massoniana plantation forest with seven forest gap sizes (G1: 100 m2; G2: 225 m2; G3: 400 m2; G4: 625 m2; G5: 900 m2; G6: 1 225 m2; G7: 1 600 m2, and the control: closed canopy) located in Gao County, south Sichuan Province during different seasons. The contents of C, N and P in leaves were measured, and the effects of edges, seasons and their interaction on leaf C, N and P contents and C:N:P stoichiometry were evaluated.Important findings The leaf C content, C:N and C:P of C. longepaniculatum at the edge of forest gaps in different seasons were all significantly higher than those of understory plants in P. massoniana plantation. With increasing size of forest gaps, leaf C content and C:N ratio, C:P and N:P of C. longepaniculatum increased initially and then decreased with the maximum at medium size (400-900 m2). From spring to winter, leaf N and P contents of C. longepaniculatum increased after an obvious decrease; and the C:N and C:P increased first but then decreased. However, the inflection point all appeared in the summer. The nutrient utilization of C. longepaniculatum at the edge of forest gaps was more efficient in summer and autumn than in spring and winter, indicating significant edge effects. The results of principal component analysis (PCA) suggested that gap size, relative light intensity and monthly average air temperature were the main environmental factors affecting the stoichiometry of C. longepaniculatum at the different edge of forest gaps in the P. massoniana plantation. These results indicated that forest gap with size 625 m2 had the highest organic matter storage and nutrient utilization efficiency in the edge areas in all seasons, and therefore had the most significant edge effect on leaf element stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号