首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ralstonia eutropha JMP134 (pJP4) grows on 3-chlorobenzoate (3-CB) or 2,4-dichlorophenoxyacetate (2,4-D). The copy number of chlorocatechol genes has been observed to be important for allowing growth of bacterial strains on chloroaromatic compounds. Despite the fact that two functional chlorocatechol degradation tfd gene clusters are harbored on plasmid pJP4, a single copy of the region comprising all tfd genes in strain JMP134-F was insufficient to allow growth on 3-CB, whereas growth on 2,4-D was only slightly retarded compared to the wild-type strain. Using competitive PCR, approximately five copies of pJP4 per genome were observed to be present in the wild-type strain, whereas only one copy of pJP4 was present per chromosome in strain JMP134-F. Therefore, several copies of pJP4 per chromosome are required for full expression of the tfd-encoded growth abilities in the wild-type R. eutropha strain.  相似文献   

2.
Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced by growth with 2,4-D and depended on the presence of the catabolic plasmid pJP4, which harbors the tfd genes for 2,4-D degradation. The tfd cluster also encodes a permease for 2,4-D named TfdK. A tfdK mutant was not chemotactic to 2,4-D, even though it grew at wild-type rates on 2,4-D.  相似文献   

3.
Phenoxyalkanoic compounds are used worldwide as herbicides. Cupriavidus necator JMP134(pJP4) catabolizes 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), using tfd functions carried on plasmid pJP4. TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively. These intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdB(I) and tfdB(II) genes to produce the respective chlorocatechols. We studied the specific contribution of each of the TfdB enzymes to the 2,4-D/MCPA degradation pathway. To accomplish this, the tfdB(I) and tfdB(II) genes were independently inactivated, and growth on each chlorophenoxyacetate and total chlorophenol hydroxylase activity were measured for the mutant strains. The phenotype of these mutants shows that both TfdB enzymes are used for growth on 2,4-D or MCPA but that TfdB(I) contributes to a significantly higher extent than TfdB(II). Both enzymes showed similar specificity profiles, with 2,4-DCP, MCP, and 4-chlorophenol being the best substrates. An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells. Furthermore, increased chlorophenol production by overexpression of TfdA also had a negative effect on 2,4-D degradation by C. necator JMP134 and by a different host, Burkholderia xenovorans LB400, harboring plasmid pJP4. The results of this work indicate that codification and expression of the two tfdB genes in pJP4 are important to avoid toxic accumulations of chlorophenols during phenoxyacetic acid degradation and that a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds.  相似文献   

4.
Ralstonia eutropha JMP134(pJP4) degrades 3-chlorobenzoate (3-CB) by using two not completely isofunctional, pJP4-encoded chlorocatechol degradation gene clusters, tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II). Introduction of several copies of each gene cluster into R. eutropha JMP222, which lacks pJP4 and thus accumulates chlorocatechols from 3-CB, allows the derivatives to grow in this substrate. However, JMP222 derivatives containing one chromosomal copy of each cluster did not grow in 3-CB. The failure to grow in 3-CB was the result of accumulation of chlorocatechols due to the limiting activity of chlorocatechol 1,2-dioxygenase (TfdC), the first enzyme in the chlorocatechol degradation pathway. Micromolar concentrations of 3- and 4-chlorocatechol inhibited the growth of strains JMP134 and JMP222 in benzoate, and cells of strain JMP222 exposed to 3 mM 3-CB exhibited a 2-order-of-magnitude decrease in viability. This toxicity effect was not observed with strain JMP222 harboring multiple copies of the tfdC(I) gene, and the derivative of strain JMP222 containing tfdC(I)D(I)E(I)F(I) plus multiple copies of the tfdC(I) gene could efficiently grow in 3-CB. In addition, tfdC(I) and tfdC(II) gene mutants of strain JMP134 exhibited no growth and impaired growth in 3-CB, respectively. The introduction into strain JMP134 of the xylS-xylXYZL genes, encoding a broad-substrate-range benzoate 1,2-dioxygenase system and thus increasing the transformation of 3-CB into chlorocatechols, resulted in derivatives that exhibited a sharp decrease in the ability to grow in 3-CB. These observations indicate that the dosage of chlorocatechol-transforming genes is critical for growth in 3-CB. This effect depends on a delicate balance between chlorocatechol-producing and chlorocatechol-consuming reactions.  相似文献   

5.
The Alcaligenes eutrophus JMP134 plasmid pJP4 contains genes necessary for the complete degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid. tfdA encodes 2,4-D monooxygenase, the initial enzyme in the 2,4-D catabolic pathway. The tfdA locus has recently been localized to a region on pJP4 13 kilobases away from a cluster of five genes, tfdB to tfdF, which encode the enzymes responsible for the further degradation of 2,4-D to chloromaleylacetic acid (W.R. Streber, K. N. Timmis, and M. H. Zenk, J. Bacteriol. 169:2950-2955, 1987). A second, dissimilar locus on pJP4, tfdAII, has been observed which encodes 2,4-D monooxygenase activity. Gas chromatographic analysis of the 2,4-D metabolites of A. eutrophus harboring pJP4 or subclones thereof localized tfdAII to within a 9-kilobase SstI fragment of pJP4 which also carries the genes tfdBCDEF. This fragment was further characterized in Escherichia coli by deletion and subcloning analysis. A region of 2.5 kilobases, adjacent to tfdC, enabled E. coli extracts to degrade 2,4-D to 2,4-dichlorophenol. Hybridization under low-stringency conditions was observed between tfdA and tfdAII, signifying that the 2,4-D monooxygenase gene was present as two related copies on pJP4.  相似文献   

6.
The enzymes chlorocatechol-1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase allow Ralstonia eutropha JMP134(pJP4) to degrade chlorocatechols formed during growth in 2,4-dichlorophenoxyacetate or 3-chlorobenzoate (3-CB). There are two gene modules located in plasmid pJP4, tfdC(I)D(I)E(I)F(I) (module I) and tfdD(II)C(II)E(II)F(II) (module II), putatively encoding these enzymes. To assess the role of both tfd modules in the degradation of chloroaromatics, each module was cloned into the medium-copy-number plasmid vector pBBR1MCS-2 under the control of the tfdR regulatory gene. These constructs were introduced into R. eutropha JMP222 (a JMP134 derivative lacking pJP4) and Pseudomonas putida KT2442, two strains able to transform 3-CB into chlorocatechols. Specific activities in cell extracts of chlorocatechol-1,2-dioxygenase (tfdC), chloromuconate cycloisomerase (tfdD), and dienelactone hydrolase (tfdE) were 2 to 50 times higher for microorganisms containing module I compared to those containing module II. In contrast, a significantly (50-fold) higher activity of maleylacetate reductase (tfdF) was observed in cell extracts of microorganisms containing module II compared to module I. The R. eutropha JMP222 derivative containing tfdR-tfdC(I)D(I)E(I)F(I) grew four times faster in liquid cultures with 3-CB as a sole carbon and energy source than in cultures containing tfdR-tfdD(II)C(II)E(II)F(II). In the case of P. putida KT2442, only the derivative containing module I was able to grow in liquid cultures of 3-CB. These results indicate that efficient degradation of 3-CB by R. eutropha JMP134(pJP4) requires the two tfd modules such that TfdCDE is likely supplied primarily by module I, while TfdF is likely supplied by module II.  相似文献   

7.
A strain of Variovorax paradoxus degrading 2,4-dichlorophenoxyacetic acid (2,4-D) was isolated from the Dijon area (France) using continuous chemostat culture. This strain, designated TV1, grew on up to 5 mM 2,4-D and efficiently degraded the herbicide as sole carbon source as well as in presence of soil extracts. It also degraded phenol and 2-methyl, 4-chlorophenoxyacetic acid at 3 mM and 2,4-dichlorophenol at 1 mM. This organism contained a stable 200 kb plasmid, designated pTV1, which showed no similarity in its restriction pattern with the archetypal 2,4-D catabolic plasmid pJP4. However, pTV1 contained an 11 kb BamHI fragment which hybridized at low stringency with the 2,4-D degradative genes tfdA, tfdB and tfdR from pJP4. PTV1 partial tfdA sequence showed 77 % similarity with the archetypal tfdA gene sequence from Ralstonia eutropha JMP134. Tn5 mutagenesis confirmed the involvement of this gene in the 2,4-D catabolic pathway. © Rapid Science Ltd. 1998  相似文献   

8.
Genetic Diversity through the Looking Glass: Effect of Enrichment Bias   总被引:19,自引:7,他引:12       下载免费PDF全文
J. Dunbar  S. White    L. Forney 《Applied microbiology》1997,63(4):1326-1331
The effect of enrichment bias on the diversity of 2,4-dichlorophenoxyacetate (2,4-D)-degrading (2,4-D(sup+)) bacteria recovered from soil was evaluated by comparing the diversity of isolates obtained by direct plating to the diversity of isolates obtained from 85 liquid batch cultures. By the two methods, a total of 159 isolates were purified from 1 g of soil and divided into populations based on repeated extragenic palindromic sequence PCR (rep-PCR) genomic fingerprints. Approximately 42% of the direct-plating isolates hybridized with the tfdA and tfdB genes from Alcaligenes eutrophus JMP134(pJP4), 27% hybridized with the tfdA and tfdB genes from Burkholderia sp. strain RASC, and 30% hybridized with none of the probes. In contrast, the enrichment isolates not only represented fewer populations than the isolates obtained by direct plating but also exhibited, almost exclusively, a single hybridization pattern with 2,4-D catabolic gene probes. Approximately 98% of the enrichment isolates possessed pJP4-type tfdA and tfdB genes, whereas isolates containing RASC-type tfdA and tfdB genes were obtained from only 2 of the 85 enrichment cultures. The skewed occurrence of the pJP4-type genes among the isolates obtained by enrichment suggests that the competitive fitness of 2,4-D(sup+) populations during growth with 2,4-D may be influenced either by specific tfd alleles or by genetic factors linked to these alleles. Moreover, the results indicate that evaluation of the diversity and distribution of catabolic pathways in nature can be highly distorted by the use of enrichment culture techniques.  相似文献   

9.
The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Plasmid pJP4 of Alcaligenes eutrophus JMP134 contains all genes for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). Five of these genes, tfdB, tfdC, tfdD, tfdE, and tfdF, have recently been localized and cloned (R. H. Don, A. J. Weightman, H.-J. Knackmuss, and K. N. Timmis, J. Bacteriol. 161:85-90, 1985). Gene tfdA, which codes for the 2,4-D monooxygenase, has now been found by mutagenesis with transposon Tn5. A 3-kilobase fragment of pJP4 cloned in a broad-host-range vector could complement the 2,4-D-negative phenotype of two mutants which lacked 2,4-D monooxygenase activity. The cloned tfdA gene was also transferred to A. eutrophus JMP222, which is a cured derivative of JMP134. The recombinant strain could utilize phenoxyacetic acid as a sole source of carbon and energy. Pseudomonas sp. strain B13, containing the cloned tfdA, was able to degrade phenoxyacetic acid and 4-chlorophenoxyacetic acid. Gene tfdA was subcloned and analyzed by deletions. Expression of 2,4-D monooxygenase in Escherichia coli containing a 1.4-kilobase subfragment was demonstrated by radioisotopic enzyme assay, and a protein of 32,000-dalton molecular mass was detected by labeling experiments. A 2-kilobase subfragment containing tfdA has been sequenced. Sequence analysis revealed an open reading frame of 861 bases which was identified as the coding region of tfdA by insertion mutagenesis.  相似文献   

12.
13.
The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are comparatively common and widely distributed among bacteria, we sought to determine if microbial populations in soil carry tfdA on plasmid vectors that lack tfdCDEF or tfdB. To capture such plasmids from soil populations, we used a recipient strain of A. eutrophus that was rifampin resistant and carried a derivative of plasmid pJP4 (called pBH501aE) in which the tfdA had been deleted. Upon mating with mixed bacterial populations from soil treated with 2,4-D, transconjugants that were resistant to rifampin yet able to grow on 2,4-D were obtained. Among the transconjugants obtained were clones that contained a ca. 75-kb plasmid, pEMT8. Bacterial hosts that carried this plasmid in addition to pBH501aE metabolized 2,4-D, whereas strains with only pEMT8 did not. Southern hybridization showed that pEMT8 encoded a gene with a low level of similarity to the tfdA gene from plasmid pJP4. Using oligonucleotide primers based on known tfdA sequences, we amplified a 330-bp fragment of the gene and determined that it was 77% similar to the tfdA gene of plasmid pJP4 and 94% similar to tfdA from Burkholderia sp. strain RASC. Plasmid pEMT8 lacked genes that exhibited significant levels of homology to tfdB and tfdCDEF. Moreover, cell extracts from A. eutrophus(pEMT8) cultures did not exhibit TfdB, TfdC, TfdD, and TfdE activities, whereas cell extracts from A. eutrophus(pEMT8)(pBH501aE) cultures did. These data suggest that pEMT8 encodes only tfdA and that this gene can effectively complement the tfdA deletion mutation of pBH501aE.  相似文献   

14.
The tfdC(I)D(I)E(I)F(I,) and tfdD(II)C(II)E(II)F(II) gene modules of plasmid pJP4 of Ralstonia eutropha JMP134 encode complete sets of functional enzymes for the transformation of chlorocatechols into 3-oxoadipate, which are all expressed during growth on 2,4-dichlorophenoxyacetate (2,4-D). However, activity of tfd(I)-encoded enzymes was usually higher than that of tfd(II)-encoded enzymes, both in the wild-type strain grown on 2,4-D and in 3-chlorobenzoate-grown derivatives harboring only one tfd gene module. The tfdD(II)-encoded chloromuconate cycloisomerase exhibited special kinetic properties, with high activity against 3-chloromuconate and poor activity against 2-chloromuconate and unsubstituted muconate, thus explaining the different phenotypic behaviors of R. eutropha strains containing different tfd gene modules. The enzyme catalyzes the formation of an equilibrium between 2-chloromuconate and 5-chloro- and 2-chloromuconolactone and very inefficiently catalyzes dehalogenation to form trans-dienelactone as the major product, thus differing from all (chloro)muconate cycloisomerases described thus far.  相似文献   

15.
This study evaluated the potential for gene transfer of a large catabolic plasmid from an introduced organism to indigenous soil recipients. The donor organism Alcaligenes eutrophus JMP134 contained the 80-kb plasmid pJP4, which contains genes that code for mercury resistance. Genes on this plasmid plus chromosomal genes also allow degradation of 2,4-dichloruphenoxyacetic acid (2,4-D). When JMP134 was inoculated into a nonsterile soil microcosm amended with 1,000 micrograms of 2,4-D g-1, significant (10(6) g of soil-1) populations of indigenous recipients or transconjugants arose. These transconjugants all contained an 80-kb plasmid similar in size to pJP4, and all degraded 2,4-D. In addition, all transconjugants were resistant to mercury and contained the tfdB gene of pJP4 as detected by PCR. No mercury-resistant, 2,4-D-degrading organisms with large plasmids or the tfdB gene were found in the 2,4-D-amended but uninoculated control microcosm. These data clearly show that the plasmid pJP4 was transferred to indigenous soil recipients. Even more striking is the fact that not only did the indigenous transconjugant population survive and proliferate but also enhanced rates of 2,4-D degradation occurred relative to microcosms in which no such gene transfer occurred. Overall, these data indicate that gene transfer from introduced organisms is an effective means of bioaugmentation and that survival of the introduced organism is not a prerequisite for biodegradation that utilizes introduced biodegradative genes.  相似文献   

16.
Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced by growth with 2,4-D and depended on the presence of the catabolic plasmid pJP4, which harbors the tfd genes for 2,4-D degradation. The tfd cluster also encodes a permease for 2,4-D named TfdK. A tfdK mutant was not chemotactic to 2,4-D, even though it grew at wild-type rates on 2,4-D.  相似文献   

17.
Cupriavidus necator (formerly Ralstonia eutropha) JMP134, harbouring the catabolic plasmid pJP4, is the best-studied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide degrading bacterium. A study of the survival and catabolic performance of strain JMP134 in agricultural soil microcosms exposed to high levels of 2,4-D was carried out. When C. necator JMP134 was introduced into soil microcosms, the rate of 2,4-D removal increased only slightly. This correlated with the poor survival of the strain, as judged by 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) profiles, and the semi-quantitative detection of the pJP4-borne tfdA gene sequence, encoding the first step in 2,4-D degradation. After 3 days of incubation in irradiated soil microcosms, the survival of strain JMP134 dramatically improved and the herbicide was completely removed. The introduction of strain JMP134 into native soil microcosms did not produce detectable changes in the structure of the bacterial community, as judged by 16S rRNA gene T-RFLP profiles, but provoked a transient increase of signals putatively corresponding to protozoa, as indicated by 18S rRNA gene T-RFLP profiling. Accordingly, a ciliate able to feed on C.␣necator JMP134 could be isolated after soil enrichment. In␣native soil microcosms, C. necator JMP134 survived better than Escherichia coli DH5α (pJP4) and similarly to Pseudomonas putida KT2442 (pJP4), indicating that species specific factors control the survival of strains harbouring pJP4. The addition of cycloheximide to soil microcosms strongly improved survival of these three strains, indicating that the eukaryotic microbiota has a strong negative effect in bioaugmentation with catabolic bacteria.  相似文献   

18.
A Flavobacterium sp. (strain 50001), capable of degrading 2,4-dichlorophenoxyacetate (2,4-D), 2-methyl-4-chlorophenoxyacetate, and 2-chlorobenzoate and imparting resistance to mercury, harbored a degradative plasmid, pRC10. Cured strains of the Flavobacterium sp. lost the plasmid as well as the ability to degrade these chlorinated compounds. Comparison of this plasmid with the well-characterized 2,4-D-degradative plasmid pJP4 from Alcaligenes eutrophus showed regions of homology between the two plasmids. Restriction fragments of plasmid pRC10 which shared homology with the regions conferring 2,4-D-degradative genes (tfd) of plasmid pJP4 were cloned into a broad-host-range plasmid and studied in Pseudomonas putida. From the results obtained, the cloned DNA fragment expressed the genes for 2,4-D monooxygenase (tfdA) and 2,4-dichlorophenol hydroxylase (tfdB). In spite of the similarity in function, the size (45 kilobases) and restriction pattern of plasmid pRC10 were considerably different from those of pJP4 (80 kilobases). This may be due to the difference in the microbial background during evolution of the two plasmids.  相似文献   

19.
We characterized the gene required to initiate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the soil bacterium Burkholderia sp. strain TFD6, which hybridized to the tfdA gene of the canonical 2,4-D catabolic plasmid pJP4 under low-stringency conditions. Cleavage of the ether bond of 2,4-D by cell extracts of TFD6 proceeded by an (alpha)-ketoglutarate-dependent reaction, characteristic of TfdA (F. Fukumori and R. P. Hausinger, J. Bacteriol. 175:2083-2086, 1993). The TFD6 tfdA gene was identified in a recombinant plasmid which complemented a tfdA transposon mutant of TFD6 created by chromosomal insertion of Tn5. The plasmid also expressed TfdA activity in Escherichia coli DH5(alpha), as evidenced by enzyme assays with cell extracts. Sequence analysis of the tfdA gene and flanking regions from strain TFD6 showed 99.5% similarity to a tfdA gene cloned from the chromosome of a different Burkholderia species (strain RASC) isolated from a widely separated geographical area. This chromosomal gene has 77.2% sequence identity to tfdA from plasmid pJP4 (Y. Suwa, W. E. Holben, and L. J. Forney, abstr. Q-403, in Abstracts of the 94th General Meeting of the American Society for Microbiology 1994.). The tfdA homologs cloned from strains TFD6 and RASC are the first chromosomally encoded 2,4-D catabolic genes to be reported. The occurrence of highly similar tfdA genes in different bacterial species suggests that this chromosomal gene can be horizontally transferred.  相似文献   

20.
Abstract: Twenty-five 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria from geographically diverse locations and presenting various degrees of similarity or no similarity to the tfdA and tfdB genes from Alcaligenes eutrophus JMP134 were analysed by PCR-RFLP (restriction length fragment polymorphism). Primers for the 2,4-D etherase gene were derived by sequence alignment of the tfdA genes from A. eutrophus JMP134 and Burkholderia sp. RASC. Primers for the 2,4-dichlorophenolhydroxylase gene were based on the tfdB gene sequence from A. eutrophus JMP134 by taking codon degeneration and variations in amino acid residue sequences into consideration. PCR amplification using the tfdA primer set produced fragments of 0.3 kb from 17 strains which showed varying degrees of similarity to the tfdA gene probe from A. eutrophus JMP134. Significant variations in the gene sequences were confirmed by PCR-RFLP analysis. DNA amplification using the tfdB primer set produced a 1.1 kb fragment from 19 strains. Amongst them, two did not show any similarity to the tfdB gene probe. The size and restriction pattern of the products obtained from A. eutrophus JMP134 were in accordance with the expected size calculated from the A. eutrophus tfdA and tfdB gene sequence and their theoretical PCR-RFLP patterns. Some strains which did not amplify using the tfdA primer set did however amplify with the tfdB primer set. These results suggest the independent evolution of these two genes in the construction of the 2,4-D metabolic pathway. Our tfdA and tfdB primer sets could be used for the detection of similar sequences in bacteria and soils. Moreover, PCR-RFLP patterns could also be used to select subsets of strains for sequencing to study the phylogeny of the tfdA and tfdB genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号