首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Penicillin-induced killing and murein hydrolase activity in Staphylococcus aureus are dependent on a variety of regulatory elements, including the LytSR two-component regulatory system and the virulence factor regulators Agr and Sar. The LytSR effects on these processes can be explained, in part, by the recent finding that a LytSR-regulated operon, designated lrgAB, affects murein hydrolase activity and penicillin tolerance. To examine the regulation of lrgAB expression in greater detail, we performed Northern blot and promoter fusion analyses. Both methods revealed that Agr and Sar, like LytSR, positively regulate lrgAB expression. A mutation in the agr locus reduced lrgAB expression approximately sixfold, while the sar mutation reduced lrgAB expression to undetectable levels. cis-acting regulatory elements involved in lrgAB expression were identified by fusing various fragments of the lrgAB promoter region to the xylE reporter gene and integrating these constructs into the chromosome. Catechol 2,3-dioxygenase assays identified DNA sequences, including an inverted repeat and intrinsic bend sites, that contribute to maximal lrgAB expression. Confirmation of the importance of the inverted repeat was achieved by demonstrating that multiple copies of the inverted repeat reduced lrgAB promoter activity, presumably by titrating out a positive regulatory factor. The results of this study demonstrate that lrgAB expression responds to a variety of positive regulatory factors and suggest that specific DNA topology requirements are important for optimal expression.  相似文献   

4.
5.
6.
7.
Previous studies in our laboratory have shown that the Staphylococcus aureus LytSR two-component regulatory system affects murein hydrolase activity and autolysis. A LytSR-regulated dicistronic operon has also been identified and shown to encode two potential membrane-associated proteins, designated LrgA and LrgB, hypothesized to be involved in the control of murein hydrolase activity. In the present study, a lrgAB mutant strain was generated and analyzed to test this hypothesis. Zymographic and quantitative analysis of murein hydrolase activity revealed that the lrgAB mutant produced increased extracellular murein hydrolase activity compared to that of the wild-type strain. Complementation of the lrgAB defect by providing the lrgAB genes in trans restored the wild-type phenotype, indicating that these genes confer negative control on extracellular murein hydrolase activity. In addition to these effects, the influence of the lrgAB mutation on penicillin-induced lysis and killing was examined. These studies demonstrated that the lrgAB mutation enhanced penicillin-induced killing of cells approaching the stationary phase of growth, the time at which the lrgAB operon was shown to be maximally expressed. This effect of the lrgAB mutation on penicillin-induced killing was shown to be independent of cell lysis. In contrast, the lrgAB mutation did not affect penicillin-induced killing of cells growing in early-exponential phase, a time in which lrgAB expression was shown to be minimal. However, expression of the lrgAB operon in early-exponential-phase cells inhibited penicillin-induced killing, again independent of cell lysis. The data generated by this study suggest that penicillin-induced killing of S. aureus involves a novel regulator of murein hydrolase activity.  相似文献   

8.
Arabidopsis thaliana vacuolar H(+)-translocating pyrophosphatase (V-PPase) was expressed functionally in yeast vacuoles with endogenous vacuolar H(+)-ATPase (V-ATPase), and the regulation and reversibility of V-ATPase were studied using these vacuoles. Analysis of electrochemical proton gradient (DeltamuH) formation with ATP and pyrophosphate indicated that the proton transport by V-ATPase or V-PPase is not regulated strictly by the proton chemical gradient (DeltapH). On the other hand, vacuolar membranes may have a regulatory mechanism for maintaining a constant membrane potential (DeltaPsi). Chimeric vacuolar membranes showed ATP synthesis coupled with DeltamuH established by V-PPase. The ATP synthesis was sensitive to bafilomycin A(1) and exhibited two apparent K(m) values for ADP. These results indicate that V-ATPase is a reversible enzyme. The ATP synthesis was not observed in the presence of nigericin, which dissipates DeltapH but not DeltaPsi, suggesting that DeltapH is essential for ATP synthesis.  相似文献   

9.
10.
The protonmotive force across the inner mitochondrial membrane (Deltap) has two components: membrane potential (DeltaPsi) and the gradient of proton concentration (DeltapH). The computer model of oxidative phosphorylation developed previously by Korzeniewski et al. (Korzeniewski, B., Noma, A., and Matsuoka, S. (2005) Biophys. Chem. 116, 145-157) was modified by including the K+ uniport, K+/H+ exchange across the inner mitochondrial membrane, and membrane capacitance to replace the fixed DeltaPsi/DeltapH ratio used previously with a variable one determined mechanistically. The extended model gave good agreement with experimental results. Computer simulations showed that the contribution of DeltaPsi and DeltapH to Deltap is determined by the ratio of the rate constants of the K+ uniport and K+/H+ exchange and not by the absolute values of these constants. The value of Deltap is mostly controlled by ATP usage. The metabolic control over the DeltaPsi/DeltapH ratio is exerted mostly by K+ uniport and K+/H+ exchange in the presence of these processes, and by the ATP usage, ATP/ADP carrier, and phosphate carrier in the absence of them. The K+ circulation across the inner mitochondrial membrane is controlled mainly by K+ uniport and K+/H+ exchange, whereas H+ circulation by ATP usage. It is demonstrated that the secondary K+ ion transport is not necessary for maintaining the physiological DeltaPsi/DeltapH ratio.  相似文献   

11.
12.
We have previously shown that anacardic acid has an uncoupling effect on oxidative phosphorylation in rat liver mitochondria using succinate as a substrate (Life Sci. 66 (2000) 229-234). In the present study, for clarification of the physicochemical characteristics of anacardic acid, we used a cyanine dye (DiS-C3(5)) and 9-aminoacridine (9-AA) to determine changes of membrane potential (DeltaPsi) and pH difference (DeltapH), respectively, in a liposome suspension in response to the addition of anacardic acid to the suspension. The anacardic acid quenched DiS-C3(5) fluorescence at concentrations higher than 300 nM, with the degree of quenching being dependent on the log concentration of the acid. Furthermore, the K(+) diffusion potential generated by the addition of valinomycin to the suspension decreased for each increase in anacardic acid concentration used over 300 nM, but the sum of the anacardic acid- and valinomycin-mediated quenching was additively increasing. This indicates that the anacardic acid-mediated quenching was not due simply to increments in the K(+) permeability of the membrane. Addition of anacardic acid in the micromolar range to the liposomes with DeltaPsi formed by valinomycin-K(+) did not significantly alter 9-AA fluorescence, but unexpectedly dissipated DeltaPsi. The DeltaPsi preformed by valinomycin-K(+) decreased gradually following the addition of increasing concentrations of anacardic acid. The DeltaPsi dissipation rate was dependent on the pre-existing magnitude of DeltaPsi, and was correlated with the logarithmic concentration of anacardic acid. Furthermore, the initial rate of DeltapH dissipation increased with logarithmic increases in anacardic acid concentration. These results provide the evidence for a unique function of anacardic acid, dissimilar to carbonylcyanide p-trifluoromethoxyphenylhydrazone or valinomycin, in that anacardic acid behaves as both an electrogenic (negative) charge carrier driven by DeltaPsi, and a 'proton carrier' that dissipates the transmembrane proton gradient formed.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
G Kaim  P Dimroth 《The EMBO journal》1999,18(15):4118-4127
ATP synthase is the universal enzyme that manufactures cellular ATP using the energy stored in a transmembrane ion gradient. This energy gradient has two components: the concentration difference (DeltapH or DeltapNa(+)) and the electrical potential difference DeltaPsi, which are thermodynamically equivalent. However, they are not kinetically equivalent, as the mitochondrial and bacterial ATP synthases require a transmembrane potential, DeltaPsi, but the chloroplast enzyme has appeared to operate on DeltapH alone. Here we show that, contrary to the accepted wisdom, the 'acid bath' procedure used to study the chloroplast enzyme develops not only a DeltapH but also a membrane potential, and that this potential is essential for ATP synthesis. Thus, for the chloroplast and other ATP synthases, the membrane potential is the fundamental driving force for their normal operation. We discuss the biochemical reasons for this phenomenon and a model that is consistent with these new experimental facts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号