首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
M Favaron  P Bernardi 《FEBS letters》1985,183(2):260-264
This paper analyzes the kinetics of the Ca2+ uniporter of mitochondria from rat heart, kidney and liver operating in a range of Ca2+ concentrations near the steady-state value (1-4 microM). Heart mitochondria exhibit the lowest activity, and physiological Mg2+ concentrations inhibit the mitochondrial Ca2+ uniporter by approx. 50% in heart and kidney, and by 20% in liver. At physiological Ca2+ and Mg2+ concentrations the external free Ca2+ maintained by respiring mitochondria in vitro is higher in heart and kidney with respect to liver mitochondria. This behaviour could represent an adaptation of different mitochondria to their specific intracellular environment.  相似文献   

3.
Stimulation of receptors on the surface of animal cells often evokes cellular responses by raising intracellular Ca(2+) concentration. The rise in cytoplasmic Ca(2+) drives a plethora of processes, including neurotransmitter release, muscle contraction, and cell growth and proliferation. Mitochondria help shape intracellular Ca(2+) signals through their ability to rapidly take up significant amounts of Ca(2+) from the cytosol via the uniporter, a Ca(2+)-selective ion channel in the inner mitochondrial membrane. The uniporter is subject to inactivation, whereby a sustained cytoplasmic Ca(2+) rise prevents further Ca(2+) uptake. In spite of its importance in intracellular Ca(2+) signaling, little is known about the mechanism underlying uniporter inactivation. Here, we report that maneuvers that promote matrix alkalinisation significantly reduce inactivation whereas acidification exacerbates it. We further show that the F(1)F(0)-ATP synthase complex is an important source of protons for inactivation of the uniporter. These findings identify a novel molecular mechanism that regulates the activity of this ubiquitous intracellular Ca(2+) channel, with implications for intracellular Ca(2+) signaling and aerobic ATP production.  相似文献   

4.
The mitochondrial calcium uniporter (MCU) is a protein located in the inner mitochondrial membrane that is responsible for mitochondrial Ca2+ uptake. Under certain pathological conditions, dysregulation of Ca2+ uptake through the MCU results in cellular dysfunction and apoptotic cell death. Given the role of the MCU in human disease, researchers have developed compounds capable of inhibiting mitochondrial calcium uptake as tools for understanding the role of this protein in cell death. In this article, we describe recent findings on the role of the MCU in mediating pathological conditions and the search for small-molecule inhibitors of this protein for potential therapeutic applications.  相似文献   

5.
线粒体钙离子摄入对能量生成、细胞分裂和死亡均具有十分重要的作用,但对该过程的机制却知之甚少。最近研究鉴定出线粒体钙离子单向转运蛋白(MCU,mitochondrial calcium uniporter)和线粒体钙离子摄入蛋白1(MICU1,mitochondrial calcium uptake 1),这两种蛋白都定位于线粒体内膜,均参与钙离子摄入。MCU拥有两个跨膜结构域,显示出钙离子通道活性并对钌红敏感,而MICU1具有两个典型的EF手形结构域,该结构可感知钙离子的变化,可能作为MCU调节蛋白发挥作用。这些研究进展对线粒体内稳态的理解和线粒体相关疾病的治疗具有重要意义。  相似文献   

6.
Uptake of Ca(2+) by mitochondria serves as a regulator of a number of important cellular functions, including energy metabolism, cytoplasmic Ca(2+) signals, and apoptosis. Recent findings reveal that the process of Ca(2+) uptake by the mitochondrial uniporter is itself regulated by Ca(2+) in a temporally complex manner.  相似文献   

7.
Zhang SZ  Gao Q  Cao CM  Bruce IC  Xia Q 《Life sciences》2006,78(7):738-745
The objective of the present study was to determine whether the mitochondrial calcium uniporter plays a role in the cardioprotection induced by ischemic preconditioning (IPC). Isolated rat hearts were subjected to 30 min of regional ischemia by ligation of the left anterior descending artery followed by 120 min of reperfusion. IPC was achieved by two 5-min periods of global ischemia separated by 5 min of reperfusion. IPC reduced the infarct size and lactate dehydrogenase release in coronary effluent, which was associated with improved recovery of left ventricular contractility. Treatment with ruthenium red (RR, 5 μM), an inhibitor of the uniporter, or with Ru360 (10 μM), a highly specific uniporter inhibitor, provided cardioprotective effects like those of IPC. The cardioprotection induced by IPC was abolished by spermine (20 μM), an activator of the uniporter. Cyclosporin A (CsA, 0.2 μM), an inhibitor of the mitochondrial permeability transition pore, reversed the effects caused by spermine. In mitochondria isolated from untreated hearts, both Ru360 (10 μM) and RR (1 μM) decreased pore opening, while spermine (20 μM) increased pore opening which was blocked by CsA (0.2 μM). In mitochondria from preconditioned hearts, the opening of the pore was inhibited, but this inhibition did not occur in the mitochondria from hearts treated with IPC plus spermine. These results indicate that the mitochondrial calcium uniporter is involved in the cardioprotection conferred by ischemic preconditioning.  相似文献   

8.
Molecular and Cellular Biochemistry - Calcium ion (Ca2+) uptake into the mitochondrial matrix influences ATP production, Ca2+ homeostasis, and apoptosis regulation. Ca2+ uptake across the...  相似文献   

9.
We explored the possibility that the hormone 3,3',5-tri-iodothyronine can regulate the biosynthesis of the mitochondrial calcium uniporter. To meet this objective experiments on Ca(2+) transport, and binding of the specific inhibitor Ru(360) were carried out in mitochondria isolated from euthyroid, hyperthyroid and hypothyroid rats. It was found that V(max) for Ca(2+) transport increased from 11.67+/-0.8 in euthyroid to 14.36+/-0.44 in hyperthyroid, and decreased in hypothyroid mitochondria to 8.62+/-0.63 nmol Ca(2+)/mg/s. Furthermore, the K(i) for the specific inhibitor Ru(360), depends on the thyroid status, i.e. 18, 19 and 13 nM for control, hyper- and hypothyroid mitochondria, respectively. In addition, the binding of 103Ru(360) was increased in hyperthyroid and decreased in hypothyroid mitochondria. Scatchard analysis for the binding of 103Ru(360) showed the following values: 28, 40 and 23 pmol/mg for control, hyper- and hypothyroid mitochondria, respectively. The K(d) for 103Ru(360) was found to be 30.39, 37.03 and 35.71 nM for controls, hyper- and hypothyroid groups, respectively. When hypothyroid rats were treated with thyroid hormone, mitochondrial Ca(2+) transport, as well as 103Ru(360) binding, reached similar values to those found for euthyroid mitochondria.  相似文献   

10.
11.
《Trends in cell biology》2023,33(3):182-184
The mitochondrial calcium uniporter (MCU) controls mitochondrial bioenergetics, and its activity varies greatly between tissues. Here, we highlight a recently identified MCU–EMRE–UCP1 complex, named thermoporter, in the adaptive thermogenesis of brown adipose tissue (BAT). The thermoporter enhances MCU activity to promote thermogenic metabolism, demonstrating a BAT-specific regulation for MCU activity.  相似文献   

12.
Polyclonal rabbit antibodies against a Ca2+-binding mitochondrial glycoprotein were found to inhibit the uniporter-mediated transport of Ca2+ in mitoplasts prepared from rat liver mitochondria. Spermine, a modulator of the uniporter, decreased the inhibition. This glycoprotein ofM r 40,000, isolated from beef heart mitochondria and earlier shown to form Ca2+-conducting channels in black-lipid membranes, thus is a good candidate for being a component of the uniporter. Antibody-IgG was found to specifically bind to mitochondria in human fibroblasts.  相似文献   

13.
14.
《Molecular cell》2022,82(19):3661-3676.e8
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

15.
目的:观察线粒体钙单向转运体在心肌低氧/复氧损伤中的作用并探讨其机制。方法:应用Langendorff大鼠心脏灌流模型,低氧/复氧(H/R)采用冠脉前降支结扎30 min、复灌120 min的方法。用生物信号采集系统记录左室发展压(LVDP)、左室压最大上升/下降速率(±dP/dtmax)、左室舒张末压(LVEDP);分光光度法分别检测冠脉流出液中乳酸脱氢酶(LDH)的含量和线粒体活性氧(ROS);TTC染色法检测心肌梗死面积。结果:与单纯低氧/复氧组相比,复氧起始给予线粒体钙单向转运体抑制剂钌红(5μmol/L)明显改善左心室各项功能指标,减小心肌梗死面积,降低线粒体ROS和冠脉流出液中LDH含量;而在复氧期起始给予线粒体钙单向转运体激动剂精胺(20μmol/L),显著升高了线粒体ROS活性,冠脉流出液中LDH含量在复氧5 min、20 min、30 min时显著增多,左心室各项功能指标与心肌梗死面积与单纯低氧/复氧组相比无显著差异。ROS清除剂MPG(1 mmol/L)与精胺联合应用则取消了精胺的作用。结论:抑制线粒体钙单向转运体可能通过减少线粒体ROS的生成减轻心脏低氧/复氧损伤。  相似文献   

16.
The activity of the calcium uniporter of rat liver mitochondria, allosterically enhanced by a pulse of calcium, decreases with time and in dependence on extramitochondrial Ca2+ concentration. Therefore, the initial velocity of calcium uptake by mitochondria depends on the extramitochondrial Ca2+ concentration prior to uptake. The allosteric activation by calcium and the hysteretic behaviour of the uniporter are the reasons why the course of calcium distribution between mitochondria and extramitochondrial space is determined for many minutes by the initial extramitochondrial Ca2+ concentration. This dependence and also the independence on the intramitochondrial calcium content are shown in an in vitro system, simulating conditions prevailing in vivo during the action of alpha-adrenergic agonists or vasoactive peptides on liver and during the early phase of carbon tetrachloride intoxication.  相似文献   

17.
A low-molecular-weight component (LMC) inducing selective transport of calcium across the bilayer lipid membrane has been isolated from mitochondria of bovine heart by the method developed in our laboratory, which excludes the use of detergents and proteolytic enzymes. It is shown that, in the presence of 10 mM CaCl2, LMC forms conduction channels in the membrane in multiples of 5 pS. The specific inhibitor of the mitochondrial calcium uniporter, ruthenium red, closes Ca2+-induced channels formed in the membrane by LMC. In the absence of calcium or in the presence of potassium ions only, the component is incapable of forming channels of conduction. It is shown using nuclear magnetic resonance that LMC is a complex consisting of lipids, amino acids, and sugars with a molecular weight of 1–2 kDa.  相似文献   

18.
A low-molecular-weight component (LMC) inducing selective transport of calcium across the bilayer lipid membrane has been isolated from mitochondria of the bovine heart by the method developed in our laboratory, which excludes the use of detergents and proteolytic enzymes. It was shown that, in the presence of 10 mM CaCl2, LMC forms conduction channels in the membrane multiples of 5 pS. The specific inhibitor of mitochondrial calcium uniporter, ruthenium red, closes Ca2(+)-induced channels formed in the membrane by LMC. In the absence of calcium or in the presence of potassium ions only, the component is incapable of forming channels of conduction. It was shown using nuclear magnetic resonance that LMC is a complex consisting of lipids, amino acids, and sugars with a molecular weight of 1-2 kDa.  相似文献   

19.
AimsAlthough iron overload induces oxidative stress and brain mitochondrial dysfunction, and is associated with neurodegenerative diseases, brain mitochondrial iron uptake has not been investigated. We determined the role of mitochondrial calcium uniporter (MCU) in brain mitochondria as a major route for iron entry. We hypothesized that iron overload causes brain mitochondrial dysfunction, and that the MCU blocker prevents iron entry into mitochondria, thus attenuating mitochondrial dysfunction.Main methodsIsolated brain mitochondria from male Wistar rats were used. Iron (Fe2 + and Fe3 +) at 0–286 μM were applied onto mitochondria at various incubation times (5–30 min), and the mitochondrial function was determined. Effects of MCU blocker (Ru-360) and iron chelator were studied.Key findingsBoth Fe2 + and Fe3 + entered brain mitochondria and caused mitochondrial swelling in a dose- and time-dependent manner, and caused mitochondrial depolarization and increased ROS production. However, Fe2 + caused more severe mitochondrial dysfunction than Fe3 +. Although all drugs attenuated mitochondrial dysfunction caused by iron overload, only an MCU blocker could completely prevent ROS production and mitochondrial depolarization.SignificanceOur findings indicated that iron overload caused brain mitochondrial dysfunction, and that an MCU blocker effectively prevented this impairment, suggesting that MCU could be the major portal for brain mitochondrial iron uptake.  相似文献   

20.
The recent discovery of genes encoding the mitochondrial calcium (Ca2+) uniporter has revealed new opportunities for studying how abnormal Ca2+ signals cause disease. Ca2+ transport across the mitochondrial inner membrane is highly regulated, and the uniporter is the channel that acts as a major portal for Ca2+ influx. Low amounts of mitochondrial Ca2+ can boost ATP synthesis, but excess amounts, such as following cytoplasmic Ca2+ overload in heart failure, triggers mitochondrial failure and cell death. In fact, precisely because mitochondrial Ca2+ transport is so tightly regulated, a fundamental understanding of how the uniporter functions is necessary. Two key uniporter features allow Ca2+ influx without mitochondrial damage during normal physiology. First, the channel is significantly more selective than other known Ca2+ channels. This prevents the permeation of other ions and uncoupling of the electrochemical gradient. Second, the uniporter becomes active at only high Ca2+ concentrations, preventing a resting leak of cytoplasmic Ca2+ itself. Now possessing the identities of the various proteins forming the uniporter, we can proceed with efforts to define the molecular determinants of permeation, selectivity and Ca2+-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号